Y. Li et al. / Tetrahedron Letters 49 (2008) 2878–2881
2881
Chem. Commun. 2007, 864; (h) Clarke, M. L.; Fuentes, J. A. Angew.
Chem., Int. Ed. 2007, 46, 930; (i) Liu, Y.; Sandoval, C. A.;
Yamaguchi, Y.; Zhang, X.; Wang, Z.; Kato, K.; Ding, K. J. Am.
Chem. Soc. 2006, 128, 14212.
ligand 2 afforded product 8a in lower enantioselectivity and
conversion (entries 8–10).
Subsequently, various a-dehydroamino acid esters were
tested in the hydrogenation reactions by using 1 as a chiral
ligand under the optimized reaction conditions. As shown
in Table 2, moderate to high enantioselectivities (69–84%
ee) were obtained. Most importantly, the supramolecular
ligand 1 gave better conversions in all the cases, and higher
enantioselectivities except for the ortho-substituted
substrates (entries 2, 5 and 8) than those obtained from
the parent monodentate phosphite 3a.
4. (a) Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Angew. Chem., Int. Ed. 2001, 40, 4271; (b) Slagt, V. F.; van
Leeuwen, P. W. N. M.; Reek, J. N. H. Angew. Chem., Int. Ed. 2003,
42, 5619; (c) Kuil, M.; Soltner, T.; van Leeuwen, P. W. N. M.; Reek,
J. N. H. J. Am. Chem. Soc. 2006, 128, 11344; (d) Slagt, V. F.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M.; Reek, H. N. J. J. Am. Chem. Soc.
2004, 126, 4056; (e) Jiang, X. B.; Lefort, L.; Goudriaan, P. E.; de
Vries, A. H. M.; van Leeuwen, P. W. N. M.; de Vries, J. G.; Reek, J.
N. H. Angew. Chem., Int. Ed. 2006, 45, 1223; (f) Takacs, J. M.; Reddy,
D. S.; Moteki, S. A.; Wu, D.; Palencia, H. J. Am. Chem. Soc. 2004,
In conclusion, we have developed a new type of
supramolecular chiral phosphorus-based ligands through
complexation between dibenzylammonium salt and di-
benzo[24]crown-8 macrocycle. In most cases, the supra-
molecular bidentate ligand exhibited superior activity and
enantioselectivity to those of the parent monodentate
ligand in the rhodium-catalyzed asymmetric hydrogenation
of a-dehydroamino acid esters. These supramolecular
ligands are modular, and further studies on optimized com-
plexation of both complementary monodentate ligands and
applications to other asymmetric reactions are underway.
´
126, 4494; (g) Rivillo, D.; Gulyas, H.; Benet-Buchholz, J.; Escudero-
´
Adan, E. C.; Freixa, Z.; van Leeuwen, P. W. N. M. Angew. Chem.,
Int. Ed. 2007, 46, 7247.
5. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017; (b) Ashton, P.
R.; Campbell, P. J.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Philp,
D.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; Williams, D. J. Angew.
Chem., Int. Ed. 1995, 34, 1865; (c) Ashton, P. R.; Fyfe, M. C. T.;
Hickingbottom, S. K.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.
´
´
J. Chem. Soc., Perkin Trans. 2 1998, 2117; (d) Arico, F.; Badjic, J. D.;
Cantrill, S. J.; Flood, A. H.; Leung, K. C. F.; Liu, Y.; Stoddart, J. F.
Top. Curr. Chem. 2005, 279, 203.
6. For selected recent examples, see: (a) Horie, M.; Suzuki, Y.; Osakada,
K. J. Am. Chem. Soc. 2004, 126, 3684; (b) Oku, T.; Furusho, Y.;
Takata, T. Angew. Chem., Int. Ed. 2004, 43, 966; (c) Tachibana, Y.;
Kihara, N.; Takata, T. J. Am. Chem. Soc. 2004, 126, 3438; (d) Zhu, X.
Z.; Chen, C. F. J. Am. Chem. Soc. 2005, 127, 13158; (e) Leung, K. C.
F.; Mendes, P. M.; Magonov, S. N.; Northrop, B. H.; Kim, S.; Patel,
K.; Flood, A. H.; Tseng, H. R.; Stoddart, J. F. J. Am. Chem. Soc.
2006, 128, 10707; (f) Huang, F. H.; Nagvekar, D. S.; Zhou, X. C.;
Gibson, H. W. Macromolecules 2007, 40, 3561.
7. During the course of preparing this Letter, analogous chiral bidentate
ligands based on a pseudoratanane skeleton have been independently
developed by Nishibayashi, see: Hattori, G.; Hori, T.; Miyake, Y.;
Nishibayashi, Y. J. Am. Chem. Soc. 2007, 129, 12930.
Acknowledgements
We are grateful to the financial support from the Na-
tional Natural Science Foundation of China (20325209,
20532010 and 20772128), the Chinese Academy of Sciences
and the Major State Basic Research Development Program
of China (2005CCA06600).
Supplementary data
8. Yamaguchi, N.; Gibson, H. W. Angew. Chem., Int. Ed. 1999, 38,
143.
Supplementary data (Experimental procedures and
characterization) associated with this article can be found,
9. Gibson, H. W.; Wang, H.; Bonrad, K.; Jones, J. W.; Slebodnick, C.;
Zackharov, L. N.; Rheingold, A. L.; Habenicht, B.; Lobue, P.; Ratliff,
A. E. Org. Biomol. Chem. 2005, 3, 2114.
10. Korostylev, A.; Gridnev, I.; Brown, J. M. J. Organomet. Chem. 2003,
680, 329.
11. (a) Makita, Y.; Kihara, N.; Nakakoji, N.; Takata, T.; Inagaki, S.;
Yamamoto, C.; Okamoto, Y. Chem. Lett. 2007, 36, 162; (b) Mobian,
P.; Banerji, N.; Bernardinelli, G.; Lacour, J. Org. Biomol. Chem. 2006,
4, 224.
References and notes
1. For reviews, see: (a) Noyori, R. Asymmetric Catalysis in Organic
Synthesis; Wiley: New York, 1994; (b) Ojima, I. Catalytic Asymmetric
Synthesis, 2nd ed.; Wiley: New York, 2000; (c) Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Berlin, 1999; Vol. 2; (d) Lin, G. Q.; Li, Y. M.; Chan,
A. S. C. Principles and Applications of Asymmetric Synthesis; Wiley-
Interscience: New York, 2001; (e) Blaser, H. U.; Malan, C.; Pugin, B.;
Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103;
(f) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
12. For selected recent examples, see: (a) You, J. S.; Drexler, H.; Zhang,
S. L.; Fischer, C.; Heller, D. Angew. Chem., Int. Ed. 2003, 42, 913; (b)
Tang, W. J.; Wu, S. L.; Zhang, X. M. J. Am. Chem. Soc. 2003, 125,
9570; (c) Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito,
E.; Wang, F.; Sun, Y. K.; Armstrong, J. D., III; Grabowski, E. J. J.;
Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126,
9918; (d) Hu, A. G.; Fu, Y.; Xie, J. H.; Zhou, H.; Wang, L. X.; Zhou,
Q. L. Angew. Chem., Int. Ed. 2002, 41, 2348; (e) Togni, A.; Breutel, C.;
Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J. Am. Chem. Soc.
1994, 116, 4062.
2. For reviews, see: (a) Breit, B. Angew. Chem., Int. Ed. 2005, 44, 6816;
(b) Sandee, A. J.; Reek, J. N. H. Dalton Trans. 2006, 3385; (c) Kleij,
A. W.; Reek, J. N. H. Chem. Eur. J. 2006, 12, 4218.
13. 31P NMR of complex Rh(I)–1 in situ generated by the mixing of 1
with [Rh(COD)2]BF4 in CDCl3: d 120.4 (dd, JRh–P = 265.7 Hz,
3. (a) Breit, B.; Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608; (b) Breit,
B.; Seiche, W. Angew. Chem., Int. Ed. 2005, 44, 1640; (c) Chevallier,
F.; Breit, B. Angew. Chem., Int. Ed. 2006, 45, 1599; (d) Waloch, C.;
Wieland, J.; Keller, M.; Breit, B. Angew. Chem., Int. Ed. 2007, 46,
3037; (e) Weis, M.; Waloch, C.; Seiche, W.; Breit, B. J. Am. Chem.
Soc. 2006, 128, 4188; (f) Birkholz, M. N.; Dubrovina, N. V.; Jiao, H.;
Michalik, D.; Holz, J.; Paciello, R.; Breit, B.; Bo¨ner, A. Chem. Eur. J.
2007, 13, 5896; (g) Sandee, A. J.; van der Burg, A. M.; Reek, J. N. H.
JP–P = 34.8 Hz, major) and 120.2 ppm (dd, JRh–P = 265.8 Hz, JP–P
=
35.2 Hz, minor) for the phosphite moiety; 31.5 (dd, JRh–P = 144.2 Hz,
JP–P = 35.6 Hz, minor) and 30.9 ppm (dd, JRh–P = 145.8 Hz,
JP–P = 35.6 Hz, major) for the phosphine moiety (for details, see
Supplementary data).
14. Reetz, M. T.; Mehler, G. Tetrahedron Lett. 2003, 44, 4593.