T. C. Nugent, A. K. Ghosh
FULL PAPER
Maryanoff, Curr. Med. Chem. 1999, 6, 955–970; e) R. Noyori,
Asymmetric Catalysis in Organic Synthesis, John Wiley and
Sons, New York, 1994.
R. Kadyrov, T. H. Riermeier, U. Dingerdissen, V. Tararov, A.
Börner, J. Org. Chem. 2003, 68, 4067–4070.
M. Sabat, C. R. Johnson, Org. Lett. 2000, 2, 1089–1092.
a) S. D. Bull, S. G. Davies, P. M. Kelly, M. Gianotti, A. D.
Smith, J. Chem. Soc. Perkin Trans. 1 2001, 3106–3111; b) S. G.
Davies, D. R. Fenwick, J. Chem. Soc. Chem. Commun. 1995,
1109–1110.
a) T. P. Tang, J. A. Ellman, J. Org. Chem. 2002, 67, 7819–7832;
b) J. A. Ellman, T. D. Owens, T. P. Tang, Acc. Chem. Res. 2002,
35, 984–995; c) T. P. Tang, J. A. Ellman, J. Org. Chem. 1999,
64, 12–13.
For enzyme catalyzed reactions, see: a) A. Liljeblad, L. T.
Kanerva, Tetrahedron 2006, 62, 5831–5854; b) H. Groeger, H.
Werner, J. Altenbuchner, A. Menzel, W. Hummel,
WO2005093081, 2005; c) M. Breuer, K. Ditrich, T. Habicher,
B. Hauer, M. Keseler, R. Stürmer, T. Zelinski, Angew. Chem.
2004, 116, 806–843; Angew. Chem. Int. Ed. 2004, 43, 788–824;
d) H. Gröger, H. Trauthwein, S. Buchholz, K. Drauz, C. Sach-
erer, S. Godfrin, H. Werner, Org. Biomol. Chem. 2004, 2, 1977–
1978.
treated with aqueous saturated NaCl (20 mL), dried with Na2SO4,
filtered and concentrated (rotary evaporator, TՅ25 °C). To this
crude mixture pivalic acid (383 mg, 1.50 equiv.) was added in EtOH
(5.0 mL) and the mixture stirred at 60 °C. After 6 h, the reaction
mixture was worked up as above, and the crude product 3h was
then treated with BH3·THF (2 mL, 1.0 ) in THF (5.0 mL) at 0 °C
for 15 min and then heated at reflux for 1 h. The refluxing solution
was cooled to room temperature, and aqueous hydrochloric acid
(10 mL, 1.0 ) was added. After removal of the THF, the neutral
organic compounds were removed by washing the aqueous layer
with Et2O (2ϫ20 mL). The aqueous layer was basified with NaOH
(20 mL, 1.0 ) to pH = 10–12. This was then further extracted with
Et2O (3ϫ20 mL), the diethyl ether layer washed with saturated
aqueous NaCl, dried with Na2SO4, and filtered to obtain the crude
diastereomeric mixture which can be isolated as a colorless liquid
using flash chromatography (hexane/EtOAc/NH4OH, 59:40:1).
Ethereal HCl was then added to the pure diastereomers and the
mixture concentrated (rotary evaporator) to obtain a hydrochloride
salt of (S)-2-methyl-1-[(S)-1-phenylethyl]pyrrolidine which is semi-
solid (288 mg, 51% overall yield from the keto ester 1h, 74% de).
The major diastereomer can be separately obtained by further flash
chromatography (hexane/EtOAc/NH4OH, 86:12:6). GC (program
C): retention time: 24.3 [major (S,S) isomer]; 23.7 min [minor (R,S)
isomer].
[4]
[5]
[6]
[7]
[8]
[9]
[10]
B. M. Trost, Acc. Chem. Res. 2002, 35, 695–705.
For α-amino acids, see: a) W. Zhang, X. Zhang, J. Org. Chem.
2007, 72, 1020–1023; b) M. A. Beenen, D. J. Weix, J. A. Ellman,
J. Am. Chem. Soc. 2006, 128, 6304–6305; c) G. Shang, Q. Yang,
X. Zhang, Angew. Chem. 2006, 118, 6508–6510; Angew. Chem.
Int. Ed. 2006, 45, 6360–6362; d) N. W. Boaz, E. B. Mackenzie,
S. D. Debenham, S. E. Large, J. A. Ponasik Jr, J. Org. Chem.
2005, 70, 1872–1880; e) L. Navarre, S. Darses, J.-P. Genet, An-
gew. Chem. 2004, 116, 737–741; Angew. Chem. Int. Ed. 2004,
43, 719–723; f) W. S. Knowles, Acc. Chem. Res. 1983, 16, 106–
112.
For β-amino acids, see: a) Q. Dai, W. Yang, X. Zhang, Org.
Lett. 2005, 7, 5343–5345; b) Y. Hsiao, N. R. Rivera, T. Rosner,
S. W. Krska, E. Njolito, F. Wang, Y. Sun, J. D. Armstrong III,
E. J. J. Grabowski, R. D. Tillyer, F. Spindler, C. Malan, J. Am.
Chem. Soc. 2004, 126, 9918–9919; c) H.-J. Drexler, J. You, S.
Zhang, C. Fischer, W. Baumann, A. Spannenberg, D. Heller,
Org. Process Res. Dev. 2003, 7, 355–361; d) W. Tang, S. Wu,
X. Zhang, J. Am. Chem. Soc. 2003, 125, 9570–9571; e) J. Wu,
X. Chen, R. Guo, C. Yeung, A. S. C. Chan, J. Org. Chem. 2003,
68, 2490–2493; f) J. Holz, A. Monsees, H. Jiao, J. You, I. V.
Komarov, C. Fischer, K. Drauz, A. Börner, J. Org. Chem. 2003,
68, 1701–1707.
(S,S)-4h (Major Isomer): Rf
= 0.40 (hexane/EtOAc/NH4OH,
59:40:1). 1H NMR (CDCl3, 400 MHz): δ = 7.20–7.38 (m, 5 H),
3.67 (q, J = 6.8 Hz, 1 H), 2.95–2.88 (m, 1 H), 2.79–2.74 (m, 1 H),
2.45 (q, J = 8 Hz, 1 H), 1.96–1.85 (m, 1 H), 1.80–1.60 (m, 2 H),
1.45–1.35 (m, 1 H), 1.36 (d, J = 6.8 Hz, 3 H), 0.85 (d, J = 6.8 Hz,
3 H) ppm. 13C NMR (CDCl3, 100 MHz): δ = 128.1, 127.7, 126.7,
60.5, 56.3, 50.0, 32.9, 22.3, 19.4, 18.4 ppm. LRMS (EI): m/z (%) =
[11]
189 (11), 174 (100), 112 (8), 105 (50), 70 (56). IR (KBr): ν = 3083,
˜
3061, 3027, 2963, 2795, 1452, 1209, 1150 cm–1.
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra and GC chromatography (de) data
are supplied for compounds 2a, 2d and 4h.
Acknowledgments
The authors are grateful for financial support from Jacobs Univer-
sity Bremen. This work has been performed within the graduate
program of Nanomolecular Science.
[12]
a) W. D. Lubell, M. Kitamura, R. Noyori, Tetrahedron: Asym-
metry 1991, 2, 543–554; b) J. Halpern, Science 1982, 217, 401–
407.
[13]
[14]
[15]
T. Bunlaksananusorn, F. Rampf, Synlett 2005, 17, 2682–2684.
C. Cimarelli, G. Palmieri, J. Org. Chem. 1996, 61, 5557–5563.
P. R. LePlae, N. Umezawa, H.-S. Lee, S. H. Gellman, J. Org.
Chem. 2001, 66, 5629–5632.
N. Ikemoto, D. M. Tellers, S. D. Dreher, J. Liu, A. Huang,
N. R. Rivera, E. Njolito, Y. Hsiao, J. C. McWilliams, J. M. Wil-
liams, J. D. Armstrong III, Y. Sun, D. J. Mathre, E. J. J. Gra-
bowski, R. D. Tillyer, J. Am. Chem. Soc. 2004, 126, 3048–3049.
T. C. Nugent, A. K. Ghosh, V. N. Wakchaure, R. R. Mohanty,
Adv. Synth. Catal. 2006, 348, 1289–1299.
[1] a) A. Hasuoka, Y. Nishikimi, Y. Nakayama, K. Kamiyama, M.
Nakao, K.-I. Miyagama, O. Nishimura, M. Fujino, J. Antibiot.
2002, 55, 322–336; b) F. A. Davis, B.-C. Chen, Chem. Soc. Rev.
1998, 27, 13–18; c) C. L. Wysong, T. S. Yokum, M. L.
McLaughlin, R. P. Hammer, Chemtech 1997, 27, 26–33; d) M.
Goodman, H. Shao, Pure Appl. Chem. 1996, 68, 1303–1308; e)
D. Seebach, A. Jeanguenat, J. Schmidt, T. Maetzke, Chimia
1989, 43, 314–317; f) C. N. Drey, Chemistry and Biochemistry
of Amino Acids (Ed.: G. C. Barrett), Chapman and Hall, New
York, 1985, chapter 3.
[2] a) H.-U. Blaser, M. Eissen, P. Fauquex, K. Hungerbühler, E.
Schmidt, G. Sedelmeir, M. Studer, in Asymmetric Catalysis on
Industrial Scale: Challenges, Approaches and Solutions (Eds.:
H. U. Blaser, E. Schmidt), Wiley-VCH, Weinheim, 2004, pp.
91–104; b) H.-U. Blaser, S. Burkhardt, H. J. Kirner, T. Mössner,
M. Studer, Synthesis 2003, 1679–1682.
[16]
[17]
[18]
[19]
H. Ohkura, D. O. Berbasov, V. A. Soloshonok, Tetrahedron
2003, 59, 1647–1656.
For a brief summary of the use of Raney-Ni for imine re-
duction and reductive amination applications, see the text and
references within: T. C. Nugent, V. N. Wakchaure, A. K.
Ghosh, R. R. Mohanty, Org. Lett. 2005, 7, 4967–4970.
Some compatible functional groups with Ti(OiPr)4 are, e.g.,
carbamates, urethanes, secondary and tertiary amides, aceto-
nides, silyl ethers, and most esters, see: a) F. E. Janssens, F. M.
Sommen, J. E. Leenaerts, Y. E. M. Van Roosbroeck, T. F.
Meert (Janssen Pharmaceutica N. V.), Combinations for opioid-
[20]
[3] For reviews, see: a) E. Juaristi, V. A. Soloshonok, Enantioselec-
tive Synthesis of β-Amino Acids, 2nd ed., Wiley-VCH, New
York, 2005; b) S. Abele, D. Seebach, Eur. J. Org. Chem. 2000,
1–15; c) I. Ojima, Catalytic Asymmetric Synthesis, Wiley-VCH,
New York, 2000; d) A. F. Abdel-Magid, J. H. Cohen, C. A.
3868
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 3863–3869