10.1002/anie.201907343
Angewandte Chemie International Edition
COMMUNICATION
J/cm2. More importantly, 96.8% of MRSA were killed with an
irradiation dose of 3 J/cm2 and the killing ability was increased to
100% at a dose of 6 J/cm2. It is worth noting that the light dose
needed to kill E. coli, S. aureus and MRSA cells with TBD-anchor
was significantly lower than those based on porphyrin, as
described in the literature (30–266 J/cm2)[13] and XF-73 (13.7–
15.2 J/cm2) which is in phase 1 clinical trial as treatment for nasal
decolonization of S. aureus (including MRSA).[14] To the best of
our knowledge, this is the first AIE PS which can effectively ablate
bacteria below micro-molar concentration.[4g, 4j] The antibacterial
performance of TBD-anchor is superior to many reports in the
literature, such as conjugated polyelectrolyte based system[9a]
and other non-AIE PSs.[15] Therefore, TBD-anchor is one of the
most effective antibacterial photosensitizers reported so far
(Table S1).[2c, 4g]
J. Yoon, S. Wang, X. Zhang, Adv. Mater. 2019, 31, e1805092; d) L.
Dijkshoorn, A. Nemec, H. Seifert. Nat. Rev. Microbiol. 2007, 5, 939-951;
e) Y. Liu, R. Qin, S. Zaat, E. Breukink, M. Heger. J. Clini. and Trans. Res.
2015.1(3); 140-167.
[3]
[4]
K. Lagerstedt, World Economic Forum, 2019.
a) D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, D. Kong, B. Liu, Adv.
Mater. 2018, 30, e1706831; b) W. Wu, D. Mao, F. Hu, S. Xu, C. Chen, C.
J. Zhang, X. Cheng, Y. Yuan, D. Ding, D. Kong, B. Liu, Adv. Mater. 2017,
29; c) W. Wu, D. Mao, X. Cai, Y. Duan, F. Hu, D. Kong, B. Liu, Chem.
Mater. 2018, 30, 3867-3873; d) W. Wu, D. Mao, S. Xu, S. Ji, F. Hu, D.
Ding, D. Kong, B. Liu, Mater. Horiz. 2017, 4, 1110-1114; e) S. Wang, W.
Wu, P. Manghnani, S. Xu, Y. Wang, C. C. Goh, L. G. Ng, B. Liu, ACS
nano 2019, 13, 3095-3105; f) S. Xu, W. Wu, X. Cai, C. J. Zhang, Y. Yuan,
J. Liang, G. Feng, P. Manghnani, B. Liu, Chem Commun. 2017, 53,
8727-8730; g) F. Hu, S. Xu, B. Liu, Adv. Mater. 2018, 30, 1801350; h) F.
Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang, D. Zhang, Anal. Chem. 2014,
86, 7987-7995; i) G. Feng, Y. Yuan, H. Fang, R. Zhang, B. Xing, G.
Zhang, D. Zhang, B. Liu, Chem. Commun. 2015, 51, 12490-12493; j) F.
Hu, D. Mao, X. Cai, W. Wu, D. Kong, B. Liu, Angew. Chem. 2018, 130,
10339-10343; k) M. Gao, Q. Hu, G. Feng, N. Tomczak, R. Liu, B. Xing,
B. Z. Tang, B. Liu, Adv. Healthc. Mater. 2015, 4, 659-663; i) M. R. Detty,
S. L. Gibson, S. J. Wagner, J. Med. Chem. 2004, 47, 3897-3915; m) H.
Zhu, J. Li, X. Qi, P. Chen, K. Pu, Nano Lett. 2018, 18, 586-594; n) Walsh,
C. D.; Zheng, G. Angew. Chem. Int. Ed. 2019, 58, 2558-2569; o) H. Yuan,
B. Wang, F. Lv, L. Liu, S. Wang, Adv Mater 2014, 26, 6978-6982.
a) A. Garcia-Sampedro, A. Tabero, I. Mahamed, P. Acedo, J. Porphyr.
Phthalocya. 2019, 23, 11-27; b) M. Wainwright, K. B. Crossley, J.
Chemother. 2002, 14, 431-443.
In summary, we developed an AIE PS (TBD-anchor) with
very efficient 1O2 generation for membrane-targeted antibacterial
treatment, which has achieved multidrug-resistant bacteria
suppression at the nano-molar level. Due to its AIE backbone with
electron-donor and electron-acceptor structural units, TBD-
anchor shows broad absorption in the visible range, while three
cationic groups were introduced into the molecular design for
bacterial membrane anchoring. Fluorescence imaging and ITC
results confirm that TBD-anchor interacts with bacterial cell
membranes through both electrostatic and hydrophobic
interactions. TBD-anchor also shows effective 1O2 generation
[5]
[6]
[7]
[8]
a) C. J. Zhang, Q. L. Hu, G. X. Feng, R. Y. Zhang, Y. Y. Yuan, X. M. Lu
and B. Liu, Chem. Sci. 2015, 6, 4580-4586; b) Q. Hu, M. Gao, G. Feng,
B. Liu, Angew. Chem. Int. Ed. 2014, 53, 14225-14229.
1
with a O2 quantum yield of 0.48. Benefitting from the enhanced
membrane interactions and photosensitizing ability, TBD-anchor
exhibited super-efficient antibacterial capability in destroying S.
aureus and MRSA at low concentration (1-2 μM) and low light
dose (3-6 J/cm2). Interestingly, the anchor also exhibited a strong
capability in killing S. aureus and MRSA at 0.4 μM under white
light of 15 J/cm2. Our study has demonstrated the promising
potential of AIE PS and the anchor strategy for anti-MRSA
treatment.
a) Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 2016, 45, 6597-
6626; b) X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K. Pu, Angew.
Chem. Int. Ed. 2018, 57, 7804-7808.
a) E. Zhao, Y. Chen, H. Wang, S. Chen, J. W. Lam, C. W. Leung, Y.
Hong, B. Z. Tang, ACS Appl. Mater. Interfaces 2015, 7, 7180-7188; b)
W. Zhang, Y. Huang, Y. Chen, E. Zhao, Y. Hong, S. Chen, J. W. Y. Lam,
J. Hou, B. Z. Tang, ACS Appl. Mater. Interfaces 2019, 11, 10567-10577.
a) B. Wang, M. Wang, A. Mikhailovsky, S. Wang, G. C. Bazan, Angew.
Chem. Int. Ed. 2017, 56, 5031-5034; b) A. W. Thomas, Z. B. Henson, J.
Du, C. A. Vandenberg, G. C. Bazan, J. Am. Chem. Soc. 2014, 136, 3736-
3739.
[9]
Acknowledgements
[10] H. Bai, H. Yuan, C. Nie, B. Wang, F. Lv, L. Liu, S. Wang, Angew. Chem.
Int. Ed. 2015, 54, 13208-13213.
We thank the Singapore National Research Foundation (R279-
000-444-281 and R279-000-483-281), the National University of
Singapore (R279-000-482-133) for financial support. This work
was also supported by City University of Hong Kong (CityU
Internal Funds for External Grant Schemes (9678157) and CityU
Applied Research Grant: Project no. 9667160).
[11]
a) I. Jelesarov, H. R. Bosshard, J. Mol. Recognit. 1999, 12, 3-18; b) K.
Liu, Y. Liu, Y. Yao, H. Yuan, S. Wang, Z. Wang, X. Zhang, Angew. Chem.
Int. Ed. 2013, 125, 8443-8447.
[12] a) H. Yan, C. Catania, G. C. Bazan, Adv. Mater. 2015, 27, 2958-2973; b)
H. Chen, M. Li, Z. Liu, R. Hu, S. Li, Y. Guo, F. Lv, L. Liu, Y. Wang, Y. Yi,
Sci. China Chem. 2018, 61, 113-117; c) H. Yuan, Z. Liu, L. Liu, F. Lv, Y.
Wang, S. Wang, Adv. Mater. 2014, 26, 4333-4338.
[13] a) C. Zhu, Q. Yang, L. Liu, F. Lv, S. Li, G. Yang, S. Wang, Adv. Mater.
2011, 23, 4805-4810; b) C. Xing, Q. Xu, H. Tang, L. Liu, S. Wang, J. Am.
Chem. Soc. 2009, 131, 13117-13124.
Keywords: antibacterial activity • aggregation-induced emission
• membrane anchor • photodynamic antimicrobial therapy •
[14]
a) M. S. Butler, M. A. Cooper, J Antibiot (Tokyo) 2011, 64, 413-425; b)
D. J. Farrell, M. Robbins, W. Rhys-Williams, W. G. Love, Int. J.
Antimicrob. Agents, 2010, 35, 531-536.
[1]
[2]
a) K. A. Brogden, Nat. Rev. Microbiol. 2005, 3, 238-250; b) J. M. Blair,
M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. Piddock, Nat. Rev.
Microbiol. 2015, 13, 42-51.
[15]
a) T. Maisch, C. Bosl, R. M. Szeimies, N. Lehn, C. Abels, Antimicrob.
Agents Chemother. 2005, 49, 1542-1552; b) T. Maisch, A. Eichner, A.
Spath, A. Gollmer, B. Konig, J. Regensburger, W. Baumler, PLoS One
2014, 9, e111792.
a) X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174-1188; b) F.
Cieplik, D. Deng, W. Crielaard, W. Buchalla, E. Hellwig, A. Al-Ahmad, T.
Maisch, Crit. Rev. Microbiol. 2018, 44, 571-589; c) X. Li, H. Bai, Y. Yang,
This article is protected by copyright. All rights reserved.