Angewandte
Chemie
[
2] Representative examples of multicomponent
asymmetric catalysts: a) S. Kobayashi, H. Ishitani,
J. Am. Chem. Soc. 1994, 116, 4083; b) T. Arai, H.
Sasai, K. Aoe, K. Okamura, T. Date, M. Shibasaki,
Angew. Chem. 1996, 108, 103; Angew. Chem. Int.
Ed. Engl. 1996, 35, 104; c) T. Arai, Y. M. A.
Yamada, N. Yamamoto, H. Sasai, M. Shibasaki,
Chem. Eur. J. 1996, 2, 1368; d) T. Arai, H. Sasai, K.
Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 1998,
1
20, 441; e) K. Mikami, T. Korenaga, M. Terada, T.
Ohkuma, T. Pham, R. Noyori, Angew. Chem. 1999,
11, 517; Angew. Chem. Int. Ed. 1999, 38, 495; f) H.
Ishitani, M. Ueno, S. Kobayashi, J. Am. Chem. Soc.
000, 122, 8180; g) H. Furuno, T. Hanamoto, Y.
1
2
Sugimoto, J. Inanaga, Org. Lett. 2000, 2, 49; h) H.
Du, K. Ding, Org. Lett. 2003, 5, 1091; i) D.
Kitamoto, H. Imma, T. Nakai, Tetrahedron Lett.
1995, 36, 1861. See also reference [3].
[
3] For recent reviews, see: a) M. Shibasaki, H. Sasai,
T. Arai, Angew. Chem. 1997, 109, 1290; Angew .
Chem. Int. Ed. Engl. 1997, 36, 1236; b) G. J.
Rowlands, Tetrahedron 2001, 57, 1865; c) M. Shi-
basaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187.
4] a) C. J. Kepert, T. J. Prior, M. J. Rosseinsky, J. Am.
Scheme 1. Asymmetric carbonyl–ene reaction catalyzed by Ti-bridged polymer.
[
Table 3: Reuse of Ti-bridged polymer in enantioselective carbonyl–ene
reaction of 6 with 7.
Chem. Soc. 2000, 122, 5158; b) J. S. Seo, D. Whang, H. Lee, S. I.
Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982; c) O. R.
Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2001, 123, 10395.
5] For the design and synthesis of the new metal-bridged polymer,
binol was chosen to be modified as chiral multidentate ligands
because binol as a ligand is used in various chiral metal catalysts.
a) C. Roshini, L. Franzini, A. Raffaelli, P. Salvadori, Synthesis
[
a]
[b]
Cycle
t [h]Yield [%]
ee [%]
[
1
2
3
4
5
98
98
98
147
147
88
72
71
88
66
88
92
89
88
88
1992, 503; b) R. Noyori, I. Tomino, Y. Tanimoto, J. Am. Chem.
Soc. 1979, 101, 3129; c) H. Yamamoto, A. Yanagisawa, K.
Ishihara, S. Saito, Pure Appl. Chem. 1998, 70, 1507; d) C. Qian,
C. Zhu, T. Huang, J. Chem. Soc. Perkin Trans. 1 1998, 2131; e) H.
Sasai, T. Arai, S. Watanabe, M. Shibasaki, Catal. Today 2000, 62,
[a]Yield of isolated product. [b]Determined by HPLC (Daicel Chiralpak
AS).
17; f) L. Pu, Chem. Rev. 1998, 98, 2405; g) S. Kobayashi, H.
Ishitani, Chem. Rev. 1999, 99, 1069; h) J. Inanaga, H. Furuno, T.
Hayano, Chem. Rev. 2002, 102, 2211; i) H. C. Aspinall, Chem.
Rev. 2002, 102, 1807.
bridged polymer exhibited consistent catalytic selectivity
affording 8 with an ee value of 88% (Table 3).
[
6] Starting from known (R)-6-Br-2,2’-bis(methoxymethyloxy)-1,1’-
binaphthalene, novel chiral multidentate ligands 2a-c were
prepared in four steps by using the Suzuki–Miyaura coupling
reaction as the key step (See the Supporting Information). The
ligand 2d was also prepared in four steps by using the Suzuki–
Miyaura coupling reaction and was identical in all the respects
with spectra reported by Lin and co-workers. (See Supporting
Information). L. Ma, P. S. White, W. Lin, J. Org. Chem. 2002, 67,
The results presented herein is the first example of a chiral
metal-bridged polymer, formed by a metal-mediated self-
assembly of chiral multidentate ligands, that functions as an
asymmetric catalyst with high enantioselectivity. This novel
method offers the possibility of immobilization of multi-
component asymmetric catalysts without using any sup-
[
8,11]
port.
The design of other types of chiral multidentate
7577.
ligands is currently being pursued.
[
7] Shibasaki and co-workers reported an efficient enantioselective
reaction by linking binol at C3. Y. S. Kim, S. Matsunaga, J. Das,
A. Sekine, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2000,
Received: July 11, 2003
Revised: August 18, 2003 [Z52354]
122, 6506.
[
[
8] T. Arai, T. Sekiguti, Y. Iizuka, S. Takizawa, S. Sakamoto, K.
Keywords: asymmetric catalysis · heterogeneous catalysis ·
immobilization · self-assembly · synthetic methods
.
Yamaguchi, H. Sasai, Tetrahedron: Asymmetry 2002, 13, 2083.
9] Al-bridged polymer (generated from ligand 2d with LiAlH in
4
the ratio of 1:1): Elemental analysis calcd (%) for polymeric
C H AlLiO (containing three molecules of THF per active
5
2
46
7
site): C 76.46, H 5.68; found: C 76.26, H 5.75. IR: ALB complex
2
871, 1591, 1502, 1463, 1425, 1340, 1126, 1049, 953, 860, 816,
[
1] For recent reviews, see: a) N. E. Leadbeater, M. Marco, Chem.
Rev. 2002, 102, 3217; b) C. A. McNamara, M. J. Dixon, M.
Bradley, Chem. Rev. 2002, 102, 3275; c) T. J. Dickerson, N. N.
Reed, K. D. Janda, Chem. Rev. 2002, 102, 3325; d) D. E.
Bergbreiter, Chem. Rev. 2002, 102, 3345; e) R. van Heerbeek,
P. C. J. Kamer, P. W. N. M. van Leeuwen, J. N. H. Reek, Chem.
Rev. 2002, 102, 3717.
À1
746 cm , Al-bridged polymer 2862, 1587, 1499, 1458, 1423, 1339,
1126, 1045, 949, 862, 820, 746 cm
À1
.
[10] Ti-bridged polymer: Elemental analysis calcd (%) for polymeric
Ti (containing one molecule of toluene per active site):
C
H
O
6
47
30
2
C 71.78, H 3.84; found: C 71.96, H 4.15. IR: Ti-binol complex
1585, 1499, 1458, 1333, 1234, 1113, 1078, 974, 935, 814, 746 cm
À1
,
Angew. Chem. Int. Ed. 2003, 42, 5711 –5714
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5713