Table 1 One- and two-photon properties of 2,1,3-benzothiadiazoles 2–10 and AF-50
23
a
c
l
max absorbance/nm (10 e)
l
max-Em/nm (w
f
)
f
g
Compd
Toluene
CH Cl
2
2
Toluene
CH
2
Cl
2
TPF lmax-Em/nm
s/GM
d
624 (0.41 )
d
680 (0.13 )
h
2
3
4
5
6
7
8
9
472 (14)
468 (17)
473 (13)
464 (15)
458 (18)
458 (19)
461 (21)
422 (22)
529 (35)
511 (42)
484 (38)
628
614
599
599
599
552
670
642
586
43
59
d
612 (0.50 )
d
660 (0.23 )
h
b
462 (20) [459 ]
d
592 (0.62 ) [584 ]
b
d
b
640 (0.43 ) [639 ]
h
83
66
d
588 (0.64 )
d
634 (0.52 )
h
462 (20)
465 (21)
426 (23)
d
591 (0.64 )
d
646 (0.40 )
i
94
96
e
550 (0.98 )
e
657 (0.14 )
h
b
d
661 (0.56 ) [653 ]
b
d
689 (0.15 ) [698 ]
b
j
530 (32) [529 ]
512 (42)
480 (39)
196
211
d
617 (0.65 )
d
683 (0.23 )
h
d
568 (0.79 )
d
663 (0.19 )
h
10
175
45
k
AF-50
a
25
b
c
26
d
Measured in 1 6 10 M solution. Reported value in ref. 13. Measured in 1 6 10 M solution. Fluorescence quantum yield relative to
rhodamine B in ethanol (0.65). Fluorescence quantum yield relative to Fluorescein in ethanol (0.97). In toluene solution. 1 GM (G o¨ ppert–
e
f
g
250
4
cm s photon molecule
21
21
h
23
i
23
Mayer) ~ 1 6 10
.
Measured in 5 6 10 M toluene solution. Measured in 1 6 10 M toluene solution.
Measured in 1.2 6 10 M toluene solution. Measured in 3.3 6 10 M toluene solution.
j
23
k
23
between the amino groups and the BTD core, and extended
p-system by introduction of a planar p-conjugate spacer.
Notes and references
{
Crystal data of 4,7-diphenyl-2,1,3-benzothiadiazole: C18
H
12
˚
N
2
S, M ~
2
88.37, triclinic, a ~ 9.597 (7), b ~ 12.05 (1), c ~ 13.959 (9) A, U ~ 1371
3
˚
¯
1) A , T ~ 123 K, space group P1 (no. 2), Z ~ 4, m (Mo–Ka) ~
21
(
Fig. 1 (a) ORTEP representation of 4,7-diphenyl-2,1,3-benzothiadiazole.
˚
2.29 mm , 54140 reflections measured, 6222 unique (Rint ~ 0.064) which
Selected bond lengths/A: a
.389, a 1.397, b 1.394, c
.393, c 1.393, a 1.402, b
.400, b 1.396, c 1.387. (b) ORTEP representation of 4. Selected bond
1.397, b 1.388, c 1.397, a 1.399, b 1.378, c 1.399, a 1.402,
1.399, a 1.402, b 1.388, c 1.397.
1
1.397, b
1.396, a
1.387, c
1
1.399, c
1.404, b
1.388, a
1
1.388, a
1.397, c
1.403, b
2
1.404, b
1.387, a
1.392, c
2
1.396, c
1.406, b
1.389, a
8
2
2
were used in all calculations. The final wR(F ) was 0.075. Crystal data of 4:
1
1
1
3
3
3
4
4
4
5
5
42 30 4
C H N S, M ~ 622.78, triclinic, a ~ 7.6837 (9), b ~ 9.991 (1), c ~
3
5
6
6
6
7
7
7
˚ ˚
¯
0.947 (2) A, U ~ 1604.5 (1) A , T ~ 123 K, space group P1 (no. 2), Z ~
1
2
8
˚
8
2
2, m(Mo–Ka) ~ 1.39 mm , 76820 reflections measured, 9313 unique
2
(Rint ~0.049)whichwereusedinallcalculations.ThefinalwR(F )was0.067.
lengths/A: a
1.382, c
1
1
1
2
2
2
3
b
3
3
4
4
4
CCDCnumbers244163and244164.Seehttp://www.rsc.org/suppdata/cc/b4/
b410016f/ for crystallographic data in .cif or other electronic format.
1
5
4,7-diphenyl-2,1,3-benzothiadiazole.
having ICT effect and strong red-emission were created.
Thus, compounds 2–10
§ The femtosecond laser measurements provide a more accurate evaluation
of the true TPA cross-sections with respect to nanosecond laser pulses.
The two-photon absorption and fluorescence spectral properties
of 2–10 also are summarized in Table 1. By the two-photon
excitation of 800 nm laser pulses, BTDs 2–10 emitted, as expected,
frequency upconverted orange-red fluorescence at the wavelength
region of 552–670 nm. In particular, red-emission was obtained
from 2, 8, and 9, in which the value of two-photon excitation
fluorescence (TPF lmax-Em) was present at 628 nm, 670 nm, and
1
G. S. He, J. D. Bhawalkar, C. F. Zhao and P. N. Prasad, Appl. Phys.
Lett., 1995, 67, 2433–2435.
2 B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich,
L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. M. McCord-
Maughon, J. Qin, H. R o¨ ckel, M. Rumi, X.-L. Wu, S. R. Marder and
J. W. Perry, Nature, 1999, 398, 51–54.
3
4
D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843–845.
P. K. Frederiksen, M. Jørgensen and P. R. Ogilby, J. Am. Chem. Soc.,
642 nm, respectively. The value of TPF lmax-Em shifted to 2–18 nm
longer wavelength, compared with those of one-photon excitation
9
fluorescence (lmax-Em) as found in the precedent report. TPA
2001, 123, 1215–1221.
5 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248, 73–76.
6 L. Ventelon, S. Charier, L. Moreaux, J. Mertz and M. Blanchard-Desce,
Angew. Chem., Int. Ed. Engl., 2001, 40, 2098–2101.
cross-sections (s) of D–p–A–p–D molecules 2–10 at 800 nm were
determined by open aperture Z-scan technique with 120 fs laser
pulses in toluene solution.§ The experimental uncertainty of s value
amounts to about ¡12%. Compound AF-50 with D–p–A
structure displays a large s value and is usually referred to as a
7
J. Yoo, S. K. Yang, M.-Y. Jeong, H. C. Ahn, S.-J. Jeon and B. R. Cho,
Org. Lett., 2003, 5, 645–648.
A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante,
G. A. Pagani, D. Pedron and R. Signorini, Chem. Commun., 2003,
8
16
TPA benchmark. Compared to AF-50, all BTD derivatives 2–10
showed large s values derived from ICT. The s value (84 GM) of 4
with terminal N,N-diphenyamino groups was about two times
larger than that (45 GM) of AF-50. The substituents such as
methyl, phenyl, 1-naphthyl, and 2-naphthyl group on the nitrogen
atom slightly affect the s value in 2–6. As a spacer, the thiophene
ring is effective as well as the C–C double bond. The s values of 8
and 9 are almost doubled, compared to that of 4. The C–C triple
bond is also effective, but to less extent; 10 showed the s value of
2
144–2145.
9 F. Meng, B. Li, S. Qian, K. Chen and H. Tian, Chem. Lett., 2004, 33,
470–471.
10 D. W. Brousmiche, J. M. Serin, J. M. J. Fr e´ chet, G. S. He, T.-C. Lin,
S. J. Chung and P. N. Prasad, J. Am. Chem. Soc., 2003, 125, 1448–1449.
1 X. Zhang, H. Gorohmaru, M. Kadowaki, T. Kobayashi, T. Ishi-i,
T. Thiemann and S. Mataka, J. Mater. Chem., 2004, 14, 1901–1904.
2 H. Gorohmaru, T. Thiemann, T. Sawada, K. Takahashi, K. Nishi-i,
N. Ochi, Y. Kosugi and S. Mataka, Heterocycles, 2002, 56, 421–431.
3 K. R. J. Thomas, J. T. Lin, M. Velusamy, Y.-T. Tao and C.-H. Chuen,
Adv. Funct. Mater., 2004, 14, 83–90.
1
1
1
175 GM. Introduction of the benzene ring at the spacer moiety of 7
was not effective, probably due to the non-planar biphenyl
structure. The results mentioned above indicate that the high TPA
ability in 8, 9, and 10 is attributable to the extended p-system
caused by introducing an efficient p-conjugate spacer.
In conclusion, we have demonstrated that D–p–A–p–D type
BTD 8 and 9 emitted strong red-fluorescence on the TPA process.
The large s values observed are attributed to enhanced ICT
14 N. N. P. Moonen, R. Gist, C. Boundon J.-P. Gisselbrecht, P. Seiler,
T. Kawai, A. Kinoshita, M. Gross, M. Irie and F. Diederich, Org.
Biomol. Chem., 2003, 1, 2032–2034.
15 J.-M. Raimundo, P. Blanchard, H. Brisset, S. Akoudad and J. Roncali,
Chem. Commun., 2000, 939–940.
1
6 B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt,
R. Kannan, L. Yuan, G. S. He and P. N. Prasad, Chem. Mater., 1998,
10, 1863–1874.
C h e m . C o m m u n . , 2 0 0 4 , 2 3 4 2 – 2 3 4 3
2 3 4 3