Macromolecules, Vol. 37, No. 11, 2004
Polymeric Borane Cocatalyst 4007
lane and stirred for an additional 4 h. The resulting product
was recrystallized and filtered.
Yield: 46% (white crystalline powder); purity 99%. H NMR
(7) Deck, P. A.; Marks, T. J . J . Am. Chem. Soc. 1995, 117, 6128.
(8) J ia, L.; Yang, X.; Stern, C. L.; Marks, T. J . Organometallics
1997, 16, 842.
1
1
9
(9) Chen, Y.-X. E.; Marks, T. J . Chem. Rev. 2000, 100, 1391-
(
C
6
D
6
6 6
, 400 MHz, δ in ppm): 4.2 (br). F NMR (C D , 400 MHz,
1
434.
δ in ppm): main component (80%): -134.5 (2F), -147.8 (1F),
(
(
(
10) Abbenhuis, H. C. L. Angew. Chem., Int. Ed. 1999, 38, 1058-
-
-
1
6
160.5 (2F); component (10%): -130.2 (2F), -143.0 (1F),
1
060.
-
1
-1
161.5 (2F). IR (Nujol, NaCl, λ in cm ): 1652, 1550, 1522,
11) Basell’s Spheripol process. For details see: Rieger, B.; M u¨ l-
406, 1394, 1379, 1315, 1282, 1143, 1112, 1018, 974, 766, 679,
haupt, R. Chimia 1995, 49, 486-491.
12) Hlatky, G. G. Chem. Rev. 2000, 100, 1347-1376.
(13) Barrett, A. G. M.; de Miguel, Y. R. Chem. Commun., 1998,
+
61, 623. GC-MS (CI): m/z 346 (M ).
Syn th esis of th e P olym er ic Coca ta lyst. A freshly pre-
pared solution of bis(pentafluorophenyl) borohydride in 5 mL
of toluene was added dropwise to a solution of poly(methyl-
diundecenylsilane) in 3 mL of toluene. The mixture was
treated in an ultrasonic bath for 10 min and stirred for an
additional hour. The product was washed two times with
2079.
(14) Roscoe, S. B.; Frechet, J . M. J .; Walzer, J . F.; Dias, A. J .
Science 1998, 280, 270-273.
15) Stork, M.; Klapper, M.; Muellen, K.; Gregorius, H.; Rief, U.
(
(
(
(
Macromol. Rapid Commun. 1999, 20, 210-213.
16) Mager, M.; Becke, S.; Windisch, H.; Denninger, U. Angew.
Chem., Int. Ed. 2001, 40, 1898-1902.
benzene to remove all educts. Yield: 98%; M ) 37 500 g/mol.
w
IR (Nujol, NaCl, λ- in cm ): 3698, 3551, 3496, 2926, 2655,
1
-1
17) Stiriba, S. E.; Kautz, H.; Frey, H. J . Am. Chem. Soc. 2002,
1
648, 1522, 1467, 1777, 1291, 1251, 1094, 975, 794.
1
24, 9698-9699.
The conversion was monitored via FT-IR by disappearance
18) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Dendritic
Molecules: Concepts, Synthesis, Perspectives; VCH: Wein-
heim, 2001.
of the characteristic vinyl end groups, for instance the dC-H
-
1
stretching bond at 3077 cm , the CdC stretching resonance
-
1
-1
at 1641 cm , and the dC-H deformation bond at 992 cm -
.
(19) Slagt, M. Q.; Stiriba, S. E.; Klein Gebbink, R. J . M.; Kautz,
H.; Frey, H.; van Koten, G. Macromolecules 2002, 35, 5734-
5737.
1
The deformation frequency of the borohydride at 1550 cm
disappeared simultaneously. Also, H NMR showed no vinylic
1
(
20) Kreiter, R.; Kleij, A. W.; Klein Gebbink, R. J . M.; van Koten,
protons of the educt )CH
5.82 ppm) groups.
Ca ta lyst Activa tion . The activation process was performed
2
(4.97 ppm) groups and the -CH)
G. Top. Curr. Chem. 2001, 217, 163-197.
(
(
21) Additional polymerization experiments with different catalyst
structures and metal centers are underway and will be
published elsewere.
by the following procedure: The desired amount of dichloro-
zirconocene precursor was dissolved in 10 mL of dry toluene
under an argon atmosphere, and 100 equiv of TIBA was added.
(
22) For B(C6F5)3 as cocatalyst: Piers, W. E.; Chivers, T. Chem.
Soc. Rev. 1997, 26, 345-354 and references therein.
Addition of the adequate amount of B(C
6
F
5
)
3
or the polymeric
(23) The polymerizations (B:Zr ) 50:1 and 100:1) were terminated
after a relatively short time due to the very high activities
to avoid PP precipitation and diffusion processes which would
influence catalyst performance. Selected polymerization runs
borane 4 (0.5 mmol/mL in toluene) gave the active species.
P r op en e P olym er iza tion Rea ction s. The polymerization
reactions were performed in a 0.5 L Buechi steel reactor at
constant pressure ((0.1 bar) and temperature ((1 °C). After
addition of 200 mL of toluene, subsequently, the polymeriza-
tion temperature was adjusted, the reactor was charged with
propene up to the desired partial pressure, and the preacti-
vated catalyst solution was injected into the autoclave via a
pressure buret. The monomer consumption was measured by
a calibrated gas flow meter (Bronkhorst F-111C-HA-33P), and
the pressure was kept constant during the entire polymeri-
zation period (Bronkhorst pressure controller P-602C-EA-33P).
Pressure, temperature, and consumption of propylene were
monitored and recorded online. The polymerization reactions
were stopped by injecting 1 mL of methanol. The reaction
mixture was poured into acidified methanol (500 mL), where
the polymer precipitated. The product was filtered, washed
with methanol, and dried in a vacuum at 50 °C overnight.
(
Table 1) were repeated several times to ensure reproduc-
ibility. The low activity values at 10:1 ratios reflect an, in
these cases, insufficient cocatalyst amount leading to â-hy-
dride abstraction and subsequent catalyst decomposition. To
obtain comparable data, the stated activities are maximum
values, which have been extrapolated to a theoretical polym-
erization time of 1 h.
(24) Rieger, B.; Troll, C.; Preuschen, J . Macromolecules 2002, 35,
5742-5743.
(
25) Chien, J . C. W.; Tsai, W. M.; Rausch, M. D. J . Am. Chem.
Soc. 1991, 113, 8570-8571.
(
26) An additional argument is based on a possible enhanced
propylene solubility inside a polymeric matrix compared to
the outer toluene phase. However, until now we have no
genuine experimental evidence that would prove this hy-
pothesis.
(27) NMR analysis of lower molecular weight PP samples gave
no indication for â-H-elimination reactions as major chain
transfer processes. However, the existence of isobutyl end
groups points toward chain transfer to MAO-aluminum as
the preferred reaction. Cf.: Kukral, K.; Lehmus, P.; Klinga,
M.; Leskel a¨ , M.; Rieger, B. Eur. J . Inorg. Chem. 2002, 1349-
Ack n ow led gm en t. The authors thank DFG Deut-
sche Forschungsgemeinschaft, SFB 569, for financial
support of this research.
1
356.
Refer en ces a n d Notes
(28) M u¨ ller, G.; Rieger, B. Prog. Polym. Sci. 2002, 27, 815-851.
(
29) For structure and solution behavior of the polyboranes/
polysilanes, cf.: (a) Drohmann, C.; M o¨ ller, M.; Gorbatsevich,
O. B.; Muzafarov, A. M. J . Polym. Sci., Part A1 2000, 38,
741. (b) Muzafarov, A. M.; Golly, M.; M o¨ ller; M. Macromol-
ecules 1995, 28, 8444. (c) Ponomarenko, S. A.; Rebrov, E. A.;
Boiko, N. I.; Muzafarov, A. M.; Shibaev, V. P. J . Polym. Sci.
1998, 1, 115. (d) Riethm u¨ ller, Ph.D. Thesis, Universitiy of
Ulm, 2003.
(
1) Brintzinger, H. H.; Fischer, D.; M u¨ lhaupt, R.; Rieger, B.;
Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34,
1
143.
(
(
(
(
(
2) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev.
2
000, 100, 1253-1345.
3) Chen, Y.-X. E.; Stern, C. L.; Yang, S.; Marks, T. J . J . Am.
Chem. Soc. 1996, 118, 12451.
4) Chen, Y.-X. E.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc.
(
30) Dietrich, U.; Hackmann, M.; Rieger, B.; Klinga, M.; Leskel a¨ ,
1
997, 119, 2582.
5) J ia, L.; Yang, X.; Ishihara, A.; Marks, T. J . Organometallics
995, 14, 3135.
M. J . Am. Chem. Soc. 1999, 121, 4348-4355.
(31) Parks, D. J .; Rupert, E.; Spence, H.; Warren, E. P. Angew.
Chem., Int. Ed. 1995, 7, 107.
1
6) Chen, Y.-X. E.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J .
J . Am. Chem. Soc. 1998, 120, 6287.
MA035854T