888
P. J. Tambade et al.
LETTER
(11) Kobayashi, T.; Tanaka, M. J. Chem. Soc., Chem. Commun.
1981, 333.
(12) Delaude, L.; Masdeu, A. M.; Alper, H. Synthesis 1994, 1149.
(13) Mohamed Ahmed, M. S.; Mori, A. Org. Lett. 2003, 5, 3057.
(14) Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.;
Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 6097.
In summary, several important features are demonstrated
in this study. The Cu(TMHD)2 complex was found to be
an excellent alternative to the toxic, air-sensitive, and ex-
pensive palladium–phosphine catalyst systems; the ease
of preparation of this complex, its high solubility in organ-
ic solvents, indefinite shelf life, and stability towards air
make it an ideal complex for the carbonylative Sonogash-
ira coupling reaction; the system works well with a wide
variety of iodoaryls with different steric and electronic
properties.
(15) Rahman, M. T.; Fukuyama, T.; Kamata, N.; Sato, M.; Ryu,
I. Chem. Commun. 2006, 2236.
(16) (a) Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.;
Bhanage, B. M. Tetrahedron Lett. 2007, 48, 6573.
(b) Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.;
Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045.
(c) Purecha, V. H.; Nandurkar, N. S.; Bhanage, B. M.;
Nagarkar, J. M. Tetrahedron Lett. 2008, 49, 1384.
(17) Typical Procedure for the Preparation of Cu(TMHD)2
NaOH (22 mmol) was dissolved in MeOH (20 mL) with
stirring and the resulting solution was cooled to r.t., followed
by addition of TMHD (20 mmol). To the mixture, a solution
obtained by dissolving Cu(NO3)2·6H2O (10 mmol) in MeOH
(20 mL) was added over a period of 30 min. The reaction
mixture was stirred for 6 h and the resulting precipitate was
filtered and dried. Yield 93%, mp 196–198 °C.
Acknowledgment
The financial assistance from Technical Education Quality Impro-
vement Programme (TEQIP), Government of India is kindly ack-
nowledged.
References and Notes
(1) (a) Aljallo, N. H.; Al-Azani, F. W. J. Heterocycl. Chem.
1974, 1101. (b) Sheng, H.; Lin, S.; Huang, Y. Tetrahedron
Lett. 1986, 27, 4893. (c) Trost, B. M.; Schmidt, T. J. Am.
Chem. Soc. 1988, 110, 2301. (d) Jeevandandam, A.;
Narkunan, K.; Cartwright, C.; Ling, Y. C. Tetrahedron Lett.
1999, 40, 4841. (e) Kel’in, A. V.; Sromek, A. W.;
Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.
(f) Chang, K.-T.; Choi, S.-H.; Yoon, Y.-J.; Lee, W. S. J.
Chem. Soc., Perkin Trans. 1 2002, 207. (g) Kel’in, A. V.;
Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
(18) General Procedure
To an 100 mL autoclave, phenylacetylene (3.0 mmol),
iodobenzene (2.0 mmol), Cu(TMHD)2 (0.1 mmol), toluene
(10 mL) and Et3N (6.0 mmol) were added. The mixture was
first stirred for 10 min, then the vessel pressures 8–20 atm of
CO and the reaction mixture was heated at 90 °C for 14 h.
After the reaction was complete, the mixture was extracted
with EtOAc (3 × 10 mL), the combined organic extracts
were dried over Na2SO4, and the solvent was removed under
vacuum. The residue obtained was purified by column
chromatography (silica gel, 60–120 mesh) using PE
(60:80)–EtOAc as eluent to afford the pure products. All the
compounds are known and were characterized by GC–MS
(Shimadzu) and NMR (Varian 300 MHz).
Spectroscopic Data of Representative Compounds
Table 2, Entry 1: GC-MS: m/z (%) = 206 [M+], 178, 129
(100). 1H NMR (300 MHz, CDCl3, 25 °C): d = 7.49–7.54
(m, 5 H), 7.61–7.63 (m, 1 H), 7.68–7.70 (m, 2 H), 8.23 (ddd,
J = 8.4, 2.1, 1.2, 2 H) ppm. 13C NMR (70 MHz, CDCl3,
25 °C): d = 87.0, 93.2, 120.2, 128.8, 128.8, 129.2, 130.9,
133.2, 134.3, 137.0, 178.1 ppm.
(2) Fontaine, M.; Chauvelier, J.; Barchewitz, P. Bull. Soc. Chim.
Fr. 1962, 2145.
(3) Schmidt, U.; Schwochau, M. Chem. Ber. 1964, 97, 1649.
(4) (a) Yashina, O. G.; Kaigorodova, T. D.; Zarva, T. V.;
Vereshechagin, L. I. Zh. Org. Khim. 1968, 4, 1904.
(b) Yashina, O. G.; Kaigorodova, T. D.; Zarva, T. V.;
Vereshechagin, L. I. Zh. Org. Khim. 1968, 4, 2104.
(5) Vereshechagin, L. I.; Yashina, O. G.; Zarva, T. V. Zh. Org.
Khim. 1966, 2, 1895.
(6) (a) Normant, J. F. Synthesis 1972, 63. (b) Logue, M. W.;
Moore, G. L. J. Org. Chem. 1975, 40, 131.
(7) Logue, M. W.; Teng, K. J. Org. Chem. 1982, 47, 2549.
(8) (a) Shi, S.; Zhang, Y. Synlett 2007, 1843. (b) Altenhoff, G.;
Würtz, S.; Glorius, F. Tetrahedron Lett. 2006, 47, 2925.
(c) Li, P.-H.; Wang, L. Adv. Synth. Catal. 2006, 348, 681.
(9) (a) Colacino, E.; Daïch, L.; Martinez, J.; Lamaty, F. Synlett
2007, 1279. (b) Saejueng, P.; Bates, C. G.; Venkataraman,
D. Synthesis 2005, 1706. (c) Thathagar, M. B.; Beckers, J.;
Rothenberg, G. Green Chem. 2004, 6, 215. (d) Li, J.-H.; Li,
J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu,
X.-C. J. Org. Chem. 2007, 72, 2053. (e) Ma, D.; Liu, F.
Chem. Commun. 2004, 1934.
Table 2, Entry 2: GC-MS: m/z (%) = 220 [M+], 192 (100),
165, 129. 1H NMR (300 MHz, CDCl3, 25 °C): d = 2.44 (s, 3
H), 7.29–7.44 (m, 5 H), 7.67 (d, J = 8.4 Hz, 2 H), 8.11 (d,
J = 8.4 Hz, 2 H) ppm. 13C NMR (70 MHz, CDCl3, 25 °C ):
d = 21.9, 87.0, 92.7, 120.3, 128.8, 129.4, 129.9, 130.8, 133.1,
134.7, 145.3, 177.8 ppm.
Table 3, Entry 1: GC-MS: m/z (%) = 186 [M+], 105 (100),
77. 1H NMR (300 MHz, CDCl3, 25 °C): d = 0.98 (t, J = 2.8,
4.8, 7.2, 3 H), 1.26–1.33 (m, 2 H), 1.63–1.69 (m, 2 H), 2.51
(t, J = 7.2, 6.8, 2 H), 7.460–7.59 (m, 3 H), 8.12–8.15 (m, 2
H) ppm. 13C NMR (70 MHz, CDCl3, 25 °C): d = 13.7, 19.1,
22.7, 29.9, 80.0, 97.0, 128.6, 129.7, 131.8, 134.0, 178.1 ppm.
(10) Kang, S. K.; Lim, K. H.; Ho, P. S.; Kim, W. Y. Synthesis
1997, 874.
Synlett 2008, No. 6, 886–888 © Thieme Stuttgart · New York