Communication
Crystal Growth & Design, Vol. 10, No. 9, 2010 3853
stereochemical demand of any types of the bridging coordination
modes for thiocyanate ion. Instead, the two thiocyante ions in the
coordinationsphereof 3 simplyact as terminalligands. The phase
purities of the bulk materials for 1-3 were confirmed by XRPD
(Figure S1 of the Supporting Information).
In summary, the present paper reports the assembly and
structural characterization of three new mercury thiocyanate
metallo-supramolecular structures with 1-D and 2-D coordination
polymers. From these results, it is concluded that a combination of
the binding behavior of the thiocyanate anion and the influence of
the ring-rigidity of the macrocycles in complexation coupled with
the tendency for the exocoordination of sulfur donors of the
thiamacrocycle alters ligand behavior and has important conse-
quences of the ligand binding modes for constructing new Hg(II)-
supramolecular systems exhibiting different architectures.
Acknowledgment. This work was supported by a grant from a
WCU project (R32-2008-000-20003-0) of MEST, Korea. L.F.L.
thanks the Australian Research Council for support.
Supporting Information Available: Experimental details, crystal
data, XRPD patterns, selected bond distances and angles, and a cif
file. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Lindoy, L. F. The Chemistry of Macrocyclic Complexes; Cam-
bridge University Press: Cambridge, U.K., 1989. (b) Lehn, J.-M.
Supramolecular Chemistry, Concept and Perspectives; VCH: Wein-
heim, Germany, 1995.
(2) (a) Park, S.; Lee, S. Y.; Lee, S. S. Inorg. Chem. 2010, 49, 1238. (b)
Lee, H.; Lee, S. S. Org. Lett. 2009, 11, 1393. (c) Jin, Y.; Yoon, I.; Seo,
J.; Lee, J.-E.; Moon, S.-T.; Kim, J.; Han, S. W.; Park, K.-M.; Lindoy,
L. F.; Lee, S. S. Dalton Trans. 2005, 788.
Figure 3. Crystal structure of 3, [Hg(p-L)(SCN)2]n: (a) core coordi-
nation unit and (b) 1-D zigzag-type network.
€
(3) (a) Blake, A. J.; Li, W.-S.; Lippolis, V.; Taylor, A.; Schroder, M. J.
Chem. Soc., Dalton Trans. 1998, 2931. (b) Li, X.-P.; Zhang, J.-Y.; Liu,
Y.; Pan, M.; Zheng, S.-R.; Kang, B.-S.; Su, C.-Y. Inorg. Chim. Acta
2007, 360, 2990. (c) Wong, W.-Y. Coord. Chem. Rev. 2007, 251, 2400.
axial positions occupied by two N atoms from an additional two
thiocyanate ions [—N3A-Hg1-N4 172.9(2)ꢀ], with the macro-
cycle adopting a highly twisted configuration. Again, the ether oxy-
gens do not coordinate. The layered structure in this case appears to
be dominated by the presence of a linear Hg1-(μ1,3-SCN)2-Hg2
repeating unit, with the flexible m-L unit simply acting as a bridging
component via its exocoordinated sulfur donor sites, which are
bound orthogonally to the mercury-containing chain. To the best of
our knowledge, 2 is the first structurally characterized 2-D network
complex adopting such 1-D looped backbones in association with
Hg1-(μ1,3-SCN)2-Hg2 repeating units. We know of only one other
related structure incorporating similar infinite Hg(II) bridging
thiocyanato chains that are linked in a similar manner by two nitro-
gens from a bridging bidentate hexamethylenetetramine ligand.11
Reaction of p-L with Hg(SCN)2 under the same conditions as
used above afforded a 1-D zigzag polymeric array of formula
[Hg( p-L)(SCN)2]n (3) incorporating a -( p-L)-Hg-( p-L)-Hg- motif
(Figure 3). The asymmetric unit of 3 contains one p-L, one mercury
ion, and two thiocyanate anions. The structural unit shown in
Figure 3 is generated through symmetry operations. The Hg1 atom
which links two macrocycles via Hg-S bonds shows distorted
tetrahedral coordination with the coordination shell composed of
two S donor atoms from two p-L macrocycles and two S-bonded
monodentate thiocynate ions. The Hg-S(thioether) distances
ꢁ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
(d) Popovic, Z.; Matkovic-Calogovic, D.; Popovic, J.; Vickovic, I.;
ꢀ
ꢀ
ꢀ
Vinkovic, M.; Vikic-Topic, D. Polyhedron 2007, 26, 1045. (e) Wang,
X.-F.; Lv, Y.; Okamura, T.; Kawaguchi, H.; Wu, G.; Sun, W.-Y.;
Ueyama, N. Cryst. Growth Des. 2007, 7, 1125.
(4) (a) Seo, J.; Song, M. R.; Lee, J.-E.; Lee, S. Y.; Yoon, I.; Park, K.-M.;
Kim, J.; Jung, J. H.; Park, S. B; Lee, S. S. Inorg. Chem. 2006, 45, 952. (b)
Lee, S. Y.; Park, S.; Lee, S. S. Inorg. Chim. Acta 2009, 362, 1047. (c) Park,
S. B.; Yoon, I.;Seo, J.; Kim, H. J.;Kim, J. S.; Lee, S. S.Bull. Korean Chem.
Soc. 2006, 27, 713.
(5) (a) Lee, J. Y.; Kim, H. J.; Jung, J. H.; Sim, W.; Lee, S. S. J. Am. Chem.
Soc. 2008, 130, 13838. (b) Lee, J. Y.; Lee, S. Y.; Sim, W.; Park, K.-M.; Kim,
J.; Lee, S. S. J. Am. Chem. Soc. 2008, 130, 6902. (c) Lee, J. Y.; Kim, H. J.;
Park, C. S.; Sim, W.; Lee, S. S. Chem.;Eur. J. 2009, 15, 8989. (d) Lee,
S. Y.; Park, S.; Lee, S. S. Inorg. Chem. 2009,48, 11335. (e) Kim, H. J.; Yoon,
I.; Lee, S. Y.; Choi, K. S.; Lee, S. S. New J. Chem. 2008, 32, 258. (f ) Park,
S.; Lee, S. Y.; Jo, M.; Lee, J. Y.; Lee, S. S. CrystEngComm 2009, 11, 43.
(6) (a) Wolf, R. E., Jr.; Hartman, J. R.; Storey, J. M. E.; Foxman,
B. M.; Cooper, S. R. J. Am. Chem. Soc. 1987, 109, 4328. (b) Hill,
S. E.; Feller, D. J. Phys. Chem. A 2000, 104, 652. (c) de Groot, B.;
Jenkins, H. A.; Loeb, S. J. Inorg. Chem. 1992, 31, 203.
(7) (a) Kim, H. J.; Yoon, I.; Lee, S. Y.; Choi, K. S.; Lee, S. S. New J.
Chem. 2008, 32, 258. (b) Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Oark, K.-M.;
Lee, S. S. Inorg, Chem. 2003, 42, 844. (c) Li, B.; Peng, Y.; Li, G.; Hua, J.;
Yu, Y.; Jin, D.; Shi, Z.; Feng, S. Cryst. Growth Des. 2010, 10, 2193.
(8) Ibrahim, Y. A.; Elwahy, A. H. M.; Elkareish, G. M. M. J. Chem.
Res. (S) 1994, 11, 414.
˚
[2.705(1), 2.576(1) A] are appreciably longer than the Hg-NSCN
˚
distances [2.487(1), 2.493(1) A]. The largest deviations fromtetra-
(9) Kim, H. J.; Song, M. R.; Lee, S. Y.; Lee, J. Y.; Lee, S. S. Eur. J.
Inorg. Chem. 2008, 3532.
hedral coordination around Hg involve the angles S1-Hg1-S2A
[86.7(1)ꢀ] and S2A-Hg1-S4 [125.0(1)ꢀ]. Once again, the two O
donor atoms of the macrocycle remain uncoordinated. The
conformation of p-L in 3 adopts a flatter conformation, suggest-
ing that the p-L isomer is less flexible that those of o-L and m-L
because of its enhanced ring rigidity, arising from the presence of
the p-xylyl ring fragment. In this case, unlike the cases of 1 and 2,
the ringcavity ofthe macrocycle seems to betoo rigid toadopt the
(10) (a) Grant, G. J.; Botros, M. E.; Hassler, J. S.; Janzen, D. E.;
Grapperhaus, C. A.; O’Toole, M. G.; Van Derveer, D. G. Poly-
hedron 2008, 27, 3097. (b) Wilhelm, M.; Deeken, S.; Berssen, E.; Saak,
W.; Lutzen, A.; Koch, R.; Strasdeit, H. Eur. J. Inorg. Chem. 2004,
2301. (c) Helm, M. L.; Combs, C. M.; Van Derveer, D. G.; Grant, G. J.
Inorg. Chim. Acta 2002, 338, 82. (d) Blake, A. J.; Li, W.-S.; Lippolis,
€
V.; Taylor, A.; Schroder, M. J. Chem. Soc., Dalton Trans. 1998, 2931.
(11) Mak, T. C. W.; Wu, Y.-K. Inorg. Chim. Acta 1985, 104, 149.