5034 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 26
Communications to the Editor
(6) Mason, P. R.; Rhodes, D. G.; Herbette, L. G. Reevaluating
Equilibrium and Kinetic Binding Parameters for Lipophilic
Drugs Based on a Structural Model for Drug Interaction with
Biological Membranes. J . Med. Chem. 1991, 34, 869-877.
(7) Homan, R.; Hamelehle, K. L. Effect of Membrane Binding on
Acyl CoA:Cholesterol Acyl-Transferase Inhibitor Activity. Ab-
stracts of the XII International Symposium on Drugs Affecting
Lipid Metabolism, Houston, TX, November 7-10, 1995, p. 61.
(8) Krause, B. R.; Anderson, M.; Bisgaier, C. L.; Bocan T.; Bousley,
R.; DeHart, P.; Essenburg, A.; Hamelehle, K. L.; Homan, R.;
Kieft, K.; McNally, W.; Stanfield, R. L.; Newton, R. S. In vivo
evidence that the lipid-regulating activity of the ACAT inhibitor
CI-976 in rats is due to inhibition of both intestinal and liver
ACAT. J . Lipid Res. 1993, 34, 279-294.
(9) Krause, B. R.; Black, A.; Bousley, R.; Essenburg, A. D.; Cornicelli,
J . A.; Holmes, A.; Homan, R.; Kieft, K. A.; Sekerke, C.; Shaw-
Hes, M. K.; Stanfield, R. L.; Trivedi, B. K.; Woolf, T. Divergent
Pharmacological Activities of PD 132301-2 and CL 277,082,
Urea Inhibitors of Acyl CoA:Cholesterol Acyl-Transferase. J .
Pharmacol. Exp. Ther. 1993, 267, 734-743.
(10) Krause, B. R.; Bousley, R.; Kieft, K.; Robertson, D. G.; Stanfield,
R. L.; Urda, E.; Newton, R. S. Comparison of Lifibrol to Other
Lipid-Regulating Agents in Experimental Animals. Pharmacol.
Res. 1994, 29, 345-357.
(11) Harris, W. L.; Dujovne, C. A.; von Bergmann, K.; Neal, J .;
Akester, J .; Windsor, S. L.; Greene, D.; Look, Z. Effects of the
ACAT inhibitor CL 277,082 on cholesterol metabolism in hu-
mans. Clin. Pharmacol. Ther. 1990, 48, 189-194.
(12) Hainer, J . W.; Terry, J . G.; Connell, J . M.; Zyruk, H.; J enkins,
R. M.; Shand, D. L.; Gillies, P. J .; Livak, K. J .; Hunt, T. L.;
Crouse, J . R., III Effect of the acyl CoA:cholesterol acyl-
transferase inhibitor DuP 128 on cholesterol absorption and
serum cholesterol in humans. Clin. Pharmacol. Ther. 1994, 56,
65-74.
(13) Krause, B. R.; Pape, M.; Rea, T.; Bousley, R.; Stanfield, R. L.;
Kieft, K.; Anderson, M. K.; Lee, H; Homan, R. CI-1011: A Novel
Cholesterol-Lowering Compound in Both Chow-Fed and Cho-
lesterol-Fed Rodent and Nonrodent Species. Abstracts of the XII
International Symposium on Drugs Affecting Lipid Metabolism,
Houston, TX, November 7-10, 1995, p 136.
(14) Schnitzer-Polokoff, R.; Compton, D.; Boykow, G.; Davis, H.;
Burrier, R. Effect of Acyl CoA:Cholesterol Acyl-Transferase
inhibition on Cholesterol Absorption and Plasma Lipoprotein
Composition in Hamsters. Comput. Biochem. Physiol. 1991, 99A,
665-670.
(15) Billheimer, J . T.; Cromley, D. A.; Higley, C. A.; Wexler, R. R.;
Robinson, C. S.; Gillies, P. J . The Diarylthioimidazole, DuP 128,
is a Potent Inhibitor of Acyl-CoA: Cholesterol Acyltransferase
(ACAT). Abstracts of the 9th International Symposium on
Atherosclerosis. Rosemont, IL, October 6-11, 1991; p 94.
(16) Schaffer, S. A.; Bloom, J . D.; De Vries, V. G.; Dutia, M.; Katocs,
A. S.; Largis, E. E. CL 277,082, A Novel Inhibitor of Cholesterol
Esterification and Cholesterol Absorption. In Atherosclerosis VII;
Fidge, N. H., Nestel, P. J ., Eds.; Elsevier: Amsterdam, 1986;
pp 633-636.
ACAT-derived cholesteryl esters in the liver may de-
termine LDL receptor number.20
In conclusion, we have identified a compound 7, which
displays potent ACAT inhibition in cellular assays
where the activity is determined on the basis of cell-
associated ACAT inhibitor. In the typical microsomal
assay, the potency of 7 is highly dependent on the
amount of microsomal membrane and albumin present
in the assay. When the concentrations of both of these
assay components are decreased, the IC50 also de-
creases. A similar finding has recently been reported
that also shows the dependence of the IC50 on the lipid
composition of the assay system.21
The compound is very efficacious in a variety of
cholesterol-fed animal models; however, efficacy in these
models has not yet been translated into efficacy in hu-
man trials. HMG-CoA reductase inhibitors and fibrates
are two classes of hypolipidemics that are efficacious
in noncholesterol-fed animal models and are known to
reduce LDL cholesterol in man. Thus, in order to pro-
vide some level of confidence in the clinical utility of
this compound, it was evaluated in two noncholesterol-
fed animal models, namely, normal, chow-fed rats and
casein-fed rabbits. Compound 7 was highly efficacious
when evaluated in these models, whereas two previous
drug candidates, CL 277082 and DuP-128, which failed
in the clinic, did not show any LDL lowering. The
relationship between efficacy, for 7, in noncholesterol-
fed animal models and plasma cholesterol lowering in
humans is currently under investigation in clinical
trials.
Su p p or tin g In for m a tion Ava ila ble: Full experimental
details (3 pages). Ordering information is given on any current
masthead page.
Refer en ces
(1) Sliskovic, D. R.; Krause, B. R.; Picard, J . A.; Anderson, M.;
Bousley, R. F.; Hamelehle, K. L; Homan, R.; J ulian, T. N.;
Rashidbaigi, Z. A.; Stanfield, R. L. Inhibitors of Acyl-CoA:
cholesterol O-Acyltransferase (ACAT) as Hypocholesterolemic
Agents. 6. The First Water-Soluble ACAT Inhibitor with Lipid-
Regulating Activity. J . Med. Chem. 1994, 37, 560-562.
(2) J ulian, T. N.; Gabriel, D. L.; Ruiz, B.; Radebaugh, G. W.;
Rashidbaigi, Z. A. Degradation Kinetics of an Experimental
Lipid Regulator (PD 138142) in Acidic Aqueous Solution.
Abstracts of the 10 th Annual Meeting of American Association
of Pharmaceutical Scientists, Miami, FL, November 5-9, 1995.
Pharm. Res. 1995, 12, S-318.
(3) Robertson, D. G.; Krause, B. R.; Welty, D. F.; Wolfgang, G. H.
I.; Graziano, M. J .; Pilcher, G. D.; Urda, E. Hepatic Microsomal
Induction Profile of Carbamic Acid[[2,6-Bis(1-Methyl ethyl)-
Phenoxy]Sulfonyl]-2,6-Bis(1-Methylethyl) Phenyl Ester, Mono-
sodium Salt (PD 138142-15), A Novel Lipid Regulating Agent.
Biochem. Pharmacol. 1995, 49, 799-808.
(4) Picard, J . A.; O’Brien, P. M.; Sliskovic, D. R.; Anderson, M.;
Bousley, R. F.; Hamelehle, K. L; Krause, B. R.; Stanfield, R. L.
Inhibitors of Acyl-CoA:cholesterol O-Acyltransferase. 17. Struc-
ture-Activity Relationships of Several Series of Compounds
Derived from N-Chlorosulfonyl Isocyanate. J . Med. Chem. 1996,
39,1243-1252.
(5) Hedayatullah, M.; Hugeny, J .-C. Synthe`ses A L’Aide D’Hete´ro-
cumule`nes. 4. Action L’Isocyanate De Chlorosulfonyle Sur les
Phe´nols Encombre´s. (Syntheses using Heterocumulenes. 4.
Reaction of N-chlorosulfonyl Isocyanate with Hindered Phenols.)
Phosphorus Sulfur 1984, 19, 167-172.
(17) Krause, B. R.; Pape, M.; Kieft, K.; Auerbach, B.; Bisgaier, C. L.;
Homan, R.; Newton, R. S. ACAT Inhibition Decreases LDL
Cholesterol in Rabbits Fed a Cholesterol-Free Diet. Arterioscler.
Thromb. 1994, 14, 598-604.
(18) Chao, Y.-S.; Yamin, T.-T.; Seidenberg, J .; Kroon, P. A. Secretion
of cholesteryl-ester-rich lipoproteins by the perfused livers of
rabbits fed a wheat-starch-casein diet. Biochim. Biophys. Acta
1986, 876, 392-398.
(19) Auerbach, B. J .; Bousley, R. F.; Stanfield, R. L.; Bisgaier, C. L.;
Homan, R.; Krause, B. R. Modulation of apoB kinetics and
lipoprotein kinetics in the casein-fed rabbit by CI-1011: In vivo
evidence for liver ACAT inhibition. Abstracts of the XII Inter-
national Symposium on Drugs Affecting Lipid Metabolism,
Houston, TX, November 7-10, 1995, p 135.
(20) Fisher, W. R.; Zech, L. A.; Stacpoole, P. W. ApoB metabolism in
familial hypercholesterolemia. Inconsistencies with the LDL
receptor paradigm. Arterioscler. Thromb. 1994, 14, 501-510.
(21) Harte, R. A.; Yeaman, S. J .; J ackson, B.; Suckling, K. E. Effect
of membrane environment on inhibition of acyl-CoA:cholesterol
acyltransferase by a range of synthetic inhibitors. Biochim.
Biophys. Acta 1995, 1258, 241-250.
J M960674D