370
J. B.-H. Tok et al. / Bioorg. Med. Chem. Lett. 12 (2002) 365–370
showed no visible binding properties (data summarized
in Table 1B). Importantly, among all the cyclic RNA
constructs studied, only the cyclic RNA construct E,
which contained the stilbenedicarboxamide linker at
both ends, again demonstrated the tightest overall
binding characteristics towards the aminoglycosides
(data summarized in Table 1).
6. Wagner, R. W.; Matteucci, M. D.; Lewis, J. G.; Gutierrez,
A. J.; Moulds, C.; Froehler, B. C. Science 1993, 260, 1510.
7. Wagner, R. W. Nature 1994, 372, 333.
8. Wagner, R. W.; Matteucci, M. D.; Grant, D.; Huang, T.;
Froehler, B. C. Nature Biotech. 1996, 14, 840.
9. Stein, C. A. Chem. Biol. 1996, 3, 319.
10. Yamakawa, H.; Abe, T.; Saito, T.; Takai, K.; Yamamoto,
N.; Takaku, H. Bioorg. Med. Chem. 1998, 6, 1025.
11. Riordan, M. L.; Martin, J. C. Nature 1991, 350, 442.
12. Ma, M. Y.-X.; McCallum, K.; Climie, S. C.; Kuperman,
R.; Lin, W. C.; Sumner-Smith, M.; Barnett, R. W. Nucleic
Acid Res. 1993, 21, 2585.
13. Ma, M. Y.-X.; Reid, L. S.; Climie, S. C.; Lin, W. C.;
Kuperman, R.; Sumner-Smith, M.; Barnett, R. W. Biochem-
istry 1993, 32, 1751.
14. Pils, W.; Micura, R. Nucleic Acid Res. 2000, 28, 1859.
15. Letsinger, R. L.; Wu, T. J. Am. Chem. Soc. 1994, 116, 811.
16. Letsinger, R. L.; Wu, T. J. Am. Chem. Soc. 1995, 117,
7323.
17. Herrlein, M. K.; Nelson, J. S.; Letsinger, R. L. J. Am.
Chem. Soc. 1995, 117, 10151.
18. Herrlein, M. K.; Letsinger, R. L. Angew. Chem., Int. Ed.
Engl. 1997, 36, 599.
19. Nelson, J. S.; Giver, L.; Ellington, A. D.; Letsinger, R. L.
Biochemistry 1996, 35, 5339.
20. Bensenler, F.; Fu, D.; Ludwig, J.; McLaughlin, L. W. J.
Am. Chem. Soc. 1993, 115, 8483.
21. Wiederholt, K.; McLaughlin, L. W. Nucleic Acid Res.
1997, 27, 2487.
22. Wu, X.; Pitsch, S. Nucleic Acid Res. 1998, 21, 4315.
23. Steiz, O. Angew. Chem., Int. Ed. Engl. 1999, 111, 3466.
24. Coupling yields in using linkers L1–L3 to yield RNA con-
structs C, D and E were satisfactory (93, 90, 91%, respec-
tively), in which the oligomers were isolated as trityl-on
derivatives by RP-HPLC, and detritylated with 80% acetic
acid. The concentrations of the oligomers were quantified by
OD260 measurements.
25. Woodcock, J.; Moazed, D.; Cannon, M.; Davies, J.; Nol-
ler, H. F. The EMBO J. 1991, 10, 3099.
26. von Ahsen, U.; Noller, H. F. Science 1995, 267, 234.
27. von Ashen, U.; Davies, J.; Schroeder, R. J. Mol. Biol.
1992, 226, 935.
28. Fourmy, D.; Recht, M. I.; Blanchard, S. C.; Puglisi, J. D.
Science 1996, 274, 1367.
29. Fourmy, D.; Yoshizawa, S.; Puglisi, J. D. J. Mol. Biol.
1998, 277, 333.
In summary, the data presented indicate that cyclic
RNA comprising of stilbenedicarboxamide linker at
both ends to create a dumbbell-shaped construct is
approximately four-fold more effective in the general
binding of aminoglycosides when compared to its hair-
pin-shaped RNA counterpart. The binding character-
istics of rhodamine-derivatized paromomycin tracer
(CRP) ligand are used to bind the various cyclic RNA
constructs, and its complex is subsequently utilized to
afford Kd values of five more other aminoglycosides in
paromomycin, neomycin B, tobramycin, kanamycin B
and streptomycin. The data obtained are consistent with
previous observations,33 which also have indicated neo-
mycin B demonstrated the tightest overall binding affi-
nities to the A-site 16S rRNA molecular targets. The
application of the stilbenedicarboxamide linker to
replace the UUCG RNA loop in the A-site 16S rRNA
construct had been shown to be both useful and feasible
in further stabilizing the duplex region. It is hypothe-
sized that the extra stabilization conferred to the overall
RNA construct is through the p–p stacking interactions
between the stilbenedicarboxamide moiety and the
adjacent base pairs of the nucleotides at the end of the
RNA duplex region.16,37,38 Through molecular modeling
(MM2 minimization using Hyperchem V5.01a), it was
indeed demonstrated by Lewis and coworkers that the
stilbenedicarboxamide moiety does adopt a coplanar
structure with the adjacent guanine and cytosine base
pairs.37 Alht ough a modestfour-fold enhancementin Kd
binding affinity was obtained, nevertheless these results
have generated a possible approach towards our effort in
designing and synthesizing RNA decoys that are capable
of better regulating gene expression at the translation level.
30. Sucheck, S. J.; Wong, C.-H. Curr. Opin. Chem. Biol. 2000,
4, 678.
31. Schroeder, R.; Waldsich, C.; Wank, H. The EMBO J.
2000, 19, 1.
32. Tor, Y.; Hermann, T.; Westhof, E. Chem. Biol. 1998, 5,
R277.
33. Wang, Y.; Hamasaki, K.; Rando, R. R. Biochemistry
1997, 36, 768.
Acknowledgements
J. B.-H. Tok gratefully acknowledges York College, the
McNair Scholars Program and RF-CUNY for a Sum-
mer ’01 Faculty Award. W. Wong and N. Baboolal are
both McNair undergraduate scholars.
34. Hendrix, M.; Priestley, E. S.; Joyce, G. F.; Wong, C.-H. J.
Am. Chem. Soc. 1997, 119, 3641.
35. Park, W. K. C.; Aner, M.; Jaksche, H.; Wong, C.-H. J.
Am. Chem. Soc. 1996, 118, 10150.
References and Notes
1. Agrawal, S. Antisense Therapeutics; Humana Press:
Totowa, NJ, 1996.
36. Tok, J. B.-H.; Huffman, G. R. Bioorg. Med. Chem. Lett.
2000, 10, 1593.
2. Crooke, S. T.; LeBleu, B. Antisense Research and Applica-
tions; CRC Press: Boca Raton, FL, 1993.
3. Wickstrom, E. Prospects for Antisense Nucleic Acid Ther-
apy of Cancer and AIDS; Wiley-Liss: New York, 1991.
4. Nielsen, P. E. Curr. Opin. Mol. Ther. 2000, 2, 282.
5. Micklefield, J. Curr. Med. Chem. 2001, 8, 1157.
37. Lewis, F. D.; Wu, T.; Liu, X.; Letsinger, R. L.; Greenfield,
S. R.; Miller, S. E.; Wasielewski, M. R. J. Am. Chem. Soc.
2000, 122, 2889.
38. Lewis, F. D.; Liu, X.; Wu, Y.; Miller, S. E.; Wasielewski,
M. R.; Letsinger, R. L.; Sanishvili, R.; Joachimiak, A.; Ter-
eshko, V.; Elgi, M. J. Am. Chem. Soc. 1999, 121, 9905.