provides a clear example of the usefulness of this approach.
Although we have investigated the effectiveness of this approach
only for the O–H—OQC hydrogen bond type, we believe that
this methodology can be extended to other hydrogen bond
12
synthons, opening up the possibility of preparing even more
complex porphyrins and photosynthetic models. These possibi-
lities are under current investigation.
This work was supported as part of the Center for Bio-
Inspired Solar Fuel Production, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Award Number
DE-SC0001016.
Notes and references
1
3
Fig. 2 H NMR spectra of porphyrin 5 (400 MHz, CDCl , 25 1C).
1
The Porphyrin Handbook, ed. K. M. Kadish, K. Smith and
R. Guilard, Academic Press, New York, 1999.
The peak marked with an asterisk is due to residual protons in the
solvent. TMS = tetramethylsilane.
2
(a) C. Maeda, T. Kamada, N. Aratani and A. Osuka, Coord.
Chem. Rev., 2007, 251, 2743–2752; (b) Z. S. Yoon, M. C. Yoon and
D. Kim, J. Photochem. Photobiol., C, 2005, 6, 249–263;
in 5. Assignment of this peak to the phenolic group is
(
c) R. W. Wagner, T. E. Johnson and J. S. Lindsey, J. Am. Chem.
supported by its absence in the spectrum after addition of a
Soc., 1996, 118, 11166–11180; (d) G. Kodis, Y. Terazono,
K. Bhushan, J. Zaks, C. Madden, A. L. Moore, T. A. Moore,
G. R. Fleming and D. Gust, J. Am. Chem. Soc., 2011, 133,
2916–2922; (e) T. Hyakutake, I. Okura, K. Asai and H. Nishide,
J. Mater. Chem., 2008, 18, 917–922; (f) P. A. Liddell, M. Gervaldo,
J. W. Bridgewater, A. E. Keirstead, S. Lin, T. A. Moore,
A. L. Moore and D. Gust, Chem. Mater., 2008, 20, 135;
3
few drops of deuterated methanol to the CDCl solution. The
formyl proton resonance appears at 10.12 ppm, confirming no
side reactions with this group. The porphyrinic core is revealed
by the resonance of the pyrrolic protons at 8.93, 8.87, and
8
.80 ppm as well as by the peak at ꢀ2.75 ppm attributed to the
inner NH protons. The two doublets observed at 8.39 and
.20 ppm are meta-coupled (J = 2.0 Hz) and therefore
assigned to the protons H2 and H6 . The aromatic doublet
at 8.45 ppm (J = 8.3 Hz) is coupled to the broad triplet peak
at 8.28 ppm and corresponds to H
(g) B. J. Brennan, M. J. Kenney, P. A. Liddell, B. R. Cherry,
J. Li, A. L. Moore, T. A. Moore and D. Gust, Chem. Commun.,
8
2
011, 47, 10034–10036; (h) W. S. Li and T. Aida, Chem. Rev., 2009,
09, 6047–6076; (i) S. Fukuzumi, K. Saito, K. Ohkubo, T. Khoury,
0
0
1
Y. Kashiwagi, M. A. Absalom, S. Gadde, F. D’Souza, Y. Araki,
0 0/H
0 0 and H
0 0/H
0 0
,
O. Ito and M. J. Crossley, Chem. Commun., 2011, 47, 7980–7982;
j) J. D. Megiatto Jr., R. Spencer and D. I. Schuster, Org. Lett.,
009, 11, 4152–4155; (k) J. A. Faiz, V. Heiz and J.-P. Sauvage,
3
5
2
6
(
2
respectively. MALDI-TOF spectrometry corroborated the
proposed structure for porphyrin 5, showing an ion peak at
+
Chem. Soc. Rev., 2009, 38, 422–442; (l) J. D. Megiatto Jr.,
S. Abwandner, G. de Miguel and D. M. Guldi, J. Am. Chem.
Soc., 2010, 132, 3847–3861; (m) P. Thordarson, E. J. A. Bijsterveld,
A. E. Rowan and R. J. M. Nolte, Nature, 2003, 424, 915–918;
(
30 10 4 4
m/z) 952.46 (M) (calculated 952.21 for C51H F N O ).
Compound 5 was successfully converted into 9 through reac-
tion with ortho-phenylenediamine in nitrobenzene under reflux to
give 8 (ref. 7) followed by acid hydrolysis of the carboxymethyl
ester group with a 70% overall yield. Electrochemical investigation
of 8 in benzonitrile revealed two (quasi)reversible anodic processes
at + 1.28 V and + 1.50 V (vs. NHE) which are attributed to the
one electron oxidation of the phenol group and the first oxida-
tion of the porphyrin core, respectively. These values indicate
(
n) A. H. F. Sourav Saha, J. F. Stoddart, S. Impellizzeri, S. Silvi,
M. Venturi and A. Credi, J. Am. Chem. Soc., 2007, 129,
12159–12171.
3 T. A. Moore, A. L. Moore and D. Gust, Acc. Chem. Res., 2009, 42,
890–1898.
(a) P. J. Rothemund, J. Am. Chem. Soc., 1936, 58, 625–627;
b) A. D. L. Adler, F. R. Finarelli, J. D. Goldmacher and
1
4
5
(
J. Assour, J. Org. Chem., 1967, 32, 476–476; (c) J. S. Lindsey,
Acc. Chem. Res., 2010, 43, 300–311.
that once the artificial photosynthetic model 9 is attached to TiO
2
(a) G. F. Moore, M. Hambourger, M. Gervaldo, O. G. Poluektov,
T. Rajh, D. Gust, T. A. Moore and A. L. Moore, J. Am. Chem.
Soc., 2008, 130, 10466–10467; (b) G. F. Moore, M. Hambourger,
G. Kodis, W. Michl, D. Gust, T. A. Moore and Ana L. Moore,
J. Phys. Chem. B, 2010, 114, 14450–14457.
J. P. McEvoy and G. W. Brudvig, Chem. Rev., 2006, 106, 4455–4483.
M. R. Grimmett, Imidazole and benzimidazole synthesis, Academic
Press, San Diego, 1997.
´
F. C. Santosa, A. C. Cunhab, M. C. B. V. de Souza, A. C. Tomea,
M. G. P. M. S. Nevesa, V. F. Ferreira and J. A. S. Cavaleiro,
Tetrahedron Lett., 2008, 49, 7268–7270.
R. W. Wagner, Y. Ciringh, C. Clausen and J. S. Lindsey, Chem.
Mater., 11, 2974–2983.
0 (a) S. Fustero, M. Sanchez-Rosello and C. del Pozo, Pure Appl.
Chem., 2010, 82, 669–677; (b) S. J. Rowan, S. J. Cantrill, G. R.
L. Cousins, J. K. M. Sanders and J. F. Stoddart, Angew. Chem.,
Int. Ed., 2002, 41, 898–952; (c) L. A. J. Shagufta, H. Shabbir and
E. V. Anslyn, Chem. Soc. Rev., 2010, 39, 3621–3632.
1 J. F. Larrow and E. N. Jacobsen, J. Org. Chem., 1994, 59, 1939–1942.
2 G. A. Jeffrey, An Introduction to Hydrogen Bond, Oxford
University Press, New York, 1997.
nanoparticles, the phenoxyl radical (at B 1.3 V vs. NHE)
should have sufficient driving force for the oxidation of water
5a,b
0.82 V vs. NHE, pH = 7).
(
Furthermore, the presence of an
intramolecular hydrogen bond in the benzimidazole-phenol
group renders the phenol oxidation process reversible, opening
up the possibility of using this system as a redox active relay as
part of a photoanode in a water splitting device.
6
7
8
9
In summary, we report an approach to the synthesis of
multi-functionalized porphyrins wherein proper incorporation
of noncovalent interactions in the synthetic design induces
advantageous selectivity in this complex chemical transformation.
The heart of the methodology centers on the fine-tuning of
formyl chemical reactivity through formation of a neutral
intramolecular O–H—OQC hydrogen bond, which effectively
prevents activation of the carbonyl moiety by acid catalysts.
The preparation of a multicomponent artificial photosynthetic
model that can mimic certain aspects of Photosystem II
1
1
1
13 A. I. Prokof’ev, Russ. Chem. Rev., 1999, 68, 727–736.
4
560 Chem. Commun., 2012, 48, 4558–4560
This journal is c The Royal Society of Chemistry 2012