Angewandte Chemie International Edition
10.1002/anie.202105667
RESEARCH ARTICLE
cannot be referred to the stereochemistry of 16 or 15 without more
direct evidence. This is because C-nucleosides are known to be
susceptible to epimerization at C1' under acidic conditions.[33-36]
The final tailoring steps that convert 16 to showdomycin are
expected to include oxidation, decarboxylation and deamination
reactions. However, the observed instability of compound 16
indicates that the final steps of showdomycin formation can
proceed via a series of nonenzymatic transformations to afford 1,
[15] M. Zhang, P. Zhang, G. Xu, W. Zhou, Y. Gao, R. Gong, Y. S. Cai, H.
Cong, Z. Deng, N. P. J. Price, X. Mao, W. Chen, Appl. Environ. Microbiol.
2020, 86, e01971-19.
[
[
[
16] S. Gao, A. Radadiya, W. Li, H. Liu, W. Zhu, V. de Crécy-Lagard, N. G. J.
Richards, J. H. Naismith, Chem. Commun. (Camb.) 2020, 56, 7617-7620.
17] S. Huang, N. Mahanta, T. P. Begley, S. E. Ealick, Biochemistry 2012, 51,
9245-9255.
18] M. Pfeiffer, B. Nidetzky, Nat. Commun. 2020, 11, 6270.
[19] T. Oja, K. D. Klika, L. Appassamy, J. Sinkkonen, P. Mäntsälä, J. Niemi,
1
'-epi-1 and the pyranose isomers of showdomycin (33 and 34).
M. Metsä-Ketelä, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 6024-6029.
[
20] T. Oja, L. Niiranen, T. Sandalova, P. Mäntsälä, G. Schneider, M. Metsä-
Ketelä, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1291-1296.
21] K. Palmu, P. Rosenqvist, K. Thapa, Y. Ilina, V. Siitonen, B. Baral, J.
Mäkinen, G. Belogurov, P. Virta, J. Niemi, M. Metsä-Ketelä, ACS Chem.
Biol. 2017, 12, 1472-1477.
Hence, the C-nucleoside 16 may actually be the true product of
the showdomycin biosynthetic pathway with showdomycin itself
being an artifact due to isolation under aerobic and acidic
conditions. Similar examples of misidentified biosynthetic
products due to oxidation, decomposition or further modifications
upon isolation have also been reported in other natural product
systems, making such a possibility not without precedent.[37,38]
Alternatively, the nonenzymatic conversion of 16 to showdomycin
may indeed represent the final stages of the biosynthetic pathway,
given that 16 is not expected to exhibit the same biological activity
typically ascribed to the more electrophilic showdomycin. While
these hypotheses remain to be further explored, the present
results offer a full description of showdomycin biosynthesis as well
as its peculiar features within the context of C-nucleoside
biochemistry. Importantly, the in vitro reconstitution of showdomycin
biosynthesis unveils the double-edged effect of autoxidation as it can
deplete the pyrrole intermediate prior to C-glycosidation but also
appears to be necessary for the putative maturation of the biologically
active natural product.
[
[
22] H.-M. Ma, Q. Zhou, Y.-M. Tang, Z. Zhang, Y.-S. Chen, H.-Y. He, H.-X.
Pan, M.-C. Tang, J.-F. Gao, S.-Y. Zhao, Y. Igarashi, G.-L. Tang, Chem.
Biol. 2013, 20, 796–805.
[23] P. Peters, E. A. Galinski, H. G. Trüper, FEMS Microbiol. Lett. 1990, 71,
57-162.
24] E. M. Witt, N. W. Davies, E. A. Galinski, Appl. Microbiol. Biotechnol. 2011,
1, 113-122.
1
[
[
[
9
25] C. Aubry, P. Clerici, C. Gerbaud, L. Micouin, J. L. Pernodet, S. Lautru,
ACS Chem. Biol. 2020, 15, 945-951.
26] P. C. Dorrestein, S. B. Bumpus, C. T. Calderone, S. Garneau-Tsodikova,
Z. D. Aron, P. D. Straight, R. Kolter, C. T. Walsh, N. L. Kelleher,
Biochemistry 2006, 45, 12756−12766.
[27] M. De Rosa, R. P. Issac, G. Houghton, Tetrahedron Lett. 1995, 36,
261–9264.
9
[
[
[
28] M. De Rosa, R. P. Issac, M. Marquez, M. Orozco, F. J. Luque, M. D.
Timken, J. Chem. Soc., Perkin Trans. 2 1999, 7, 1433–1438.
29] C. Pichon-Santander, R. Shankar, A. I. Scott, Tetrahedron Lett. 1997, 38,
1293-1296.
30] K. Shinoda, T. Hasegawa, H. Sato, M. Shinozaki, H. Kuramoto, Y.
Takamiya, T. Sato, N. Nikaidou, T. Watanabe, T. Hoshino, Chem.
Commun. 2007, 40, 4140-4142.
Acknowledgements
[31] A. R. Howard-Jones, C. T. Walsh, J. Am. Chem. Soc. 2007, 129, 11016-
11017.
We thank Dr. Mark Ruszczycky for his critical review and help of
preparing the manuscript. This work was supported by grants
from the National Institutes of Health (GM040541, GM035906)
and the Welch Foundation (F-1511).
[
32] K. S. Ryan, A. R. Howard-Jones, M. J. Hamill, S. J. Elliott, C. T. Walsh,
C. L. Drennan, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15311-15316.
33] W. E. Cohn, J. Biol. Chem. 1960, 235, 1488-1498.
34] R. Sharpiro, R. W. Chambers, J. Am. Chem. Soc. 1961, 83, 3920-3921.
35] R. W. Chambers, V. Kurkov, R. Sharpiro, Biochemistry 1963, 2, 1192-
1203.
[
[
[
Keywords: C-nucleoside • maleimide • biosynthesis • C-
glycosidation • autoxidation.
[
36] Y. L. Jiang, J. T. Stivers, Tetrahedron Lett. 2003, 44, 85-88.
37] C. Huang, C. Yang, W. Zhang, L. Zhang, B. C. De, Y. Zhu, X. Jiang, C.
Fang, Q. Zhang, C.-S. Yuan, H.-w. Liu, C.-s. Zhang, Nat. Commun. 2018,
[
[
1]
R. J. Suhadolnik in Nucleoside Antibiotics; Wiley-Interscience: New York,
970.
9, 2088.
1
[38] R. J. Capon, Nat. Prod. Rep. 2020, 37, 55-79.
[
[
2]
3]
J. G. Buchanan, Fortschr. Chem. Org. Naturst. 1983, 44, 243-299.
J. Stambaský, M. Hocek, P. Kocovský, Chem. Rev. 2009, 109, 6729-
6764.
[
4]
5]
E. De Clercq, J. Med. Chem. 2016, 59, 2301-2311.
[
H. Nishimura, M. Mayama, Y. Komatsu, H. Kato, N. Shimaoka, Y.
Tanaka, J. Antibiot. (Tokyo) 1964, 17, 148–155.
[6]
K. R. Darnall, L. B. Townsend, R. K. Robins, Proc. Natl. Acad. Sci. U. S.
A. 1967, 57, 548-553.
[7]
[8]
[9]
D. Maryanka, I. R. Johnston, FEBS Lett. 1970, 7, 125-128.
P. Roy-Burman, Recent Results Cancer Res. 1970, 25, 70-82.
S. Matsuura, O. Shiratori, K. Katagiri, J. Antibiot. (Tokyo) 1964, 17, 234-
2
37.
10] S. Roy-Burman, P. Roy-Burman, D. W. Visser, Cancer Res. 1968, 28,
605–1610.
[
1
[
11] H. Nishimura, Y. Komatsu, J. Antibiot. (Tokyo) 1968, 21, 250-254.
12] Y. I. Uehara, J. M. Fisher, M. Rabinowicz, Biochem. Pharmacol. 1980,
[
29, 2199-2204.
[
13] T. Böttcher, S. A. Sieber, J. Am. Chem. Soc. 2010, 132, 6964-6972.
14] D. Ren, S.-A. Wang, Y. Ko, Y. Geng, Y. Ogasawara, H.-w. Liu, Angew.
Chem. Int. Ed. Engl. 2019, 58, 16512-16516.
[
6
This article is protected by copyright. All rights reserved.