C O M M U N I C A T I O N S
Table 2. Cu(I)-Xantphos-Catalyzed Reaction of Allylic
Carbonates with Diboron 2a
upon displacements of prochiral allyl alcohol derivatives in the
presence of an optically active copper catalyst are currently
underway.
Supporting Information Available: Experimental procedures and
compound characterization data (PDF). This material is available free
References
(1) (a) Hoffmann, R. W. In Stereocontrolled Organic Synthesis; Trost, B.
M., Ed.; Blackwell Scientific Publications: Oxford, 1994; pp 259-274.
(b) Matteson, D. S. Stereodirected Synthesis with Organoboranes;
Springer: Berlin, 1995. (c) Roush, W. R. Allylboron Reagents. In
StereoselectiVe Synthesis; Ahlbrecht, H., Helmchean, G., Arend, M.,
Herrmann, R., Eds.; Methods in Organic Chemistry E21b; Georg
Thieme: Stuttgart, 1995; pp 1410-1485.
(2) Pd-catalyzed reactions of allylic compounds with diborons were reported,
but they were not γ-selective. Both linear and branched allylic compounds
led to a linear allylboronate. This is probably due to the formation of a
(π-allyl)palladium(II) intermediate. See: (a) Ishiyama, T.; Ahiko, T.;
Miyaura, N. Tetrahedron Lett. 1996, 37, 6889-6892. (b) Ahiko, T. A.;
Ishiyama, T.; Miyaura, N. Chem. Lett. 1997, 811-812. (c) Sebelius, S.;
Wallner, O. A.; Szabo´, K. J. Org. Lett. 2003, 5, 3065-3068.
(3) Very recently, palladium pincer complex-catalyzed reaction of allylic
compounds with tetrahydroxydiboron was reported to be effective for the
synthesis of functionalized allylboronic acids. Although it was proposed
that this reaction proceeds without formation of a (π-allyl)palladium(II)
complex, the regiospecificity was not demonstrated. Instead, only the
reactions producing linear allylboronic acids were reported. See: Sebelius,
S.; Olsson, V. J.; Szabo´, K. J. J. Am. Chem. Soc. 2005, 127, 10478-
10479.
(4) For Pt-catalyzed reaction of allyl halides with pinacolborane, see: Murata,
M.; Watanabe, S.; Masuda, Y. Tetrahedron Lett. 2000, 41, 5877-5880.
(5) For Cu-mediated reaction of allyl chloride and a diboron, see: (a)
Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000,
126-127. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet.
Chem. 2001, 625, 47-53.
(6) For Cu-catalyzed reactions of allylic acetates activated by an electron-
withdrawing group, see: Ramachandran, P. V.; Pratihar, D.; Biswas, D.;
Srivastava, A.; Reddy, M. V. R. Org. Lett. 2004, 6, 481-484. See also
refs 5 and 13.
a Conditions: catalyst (5 mol %), allylic carbonates 1a (0.50 mmol),
diboron 2 (1.0 mmol), and THF (0.5 mL) at room temperature. b Isolated
yield of all allylboronates. c Isomeric ratio (3a:3b ) 2:98, E:Z (for 3b) )
97:3) was determined by GC. d Yield on a 5 mmol scale (reaction time: 3
h). e Isomeric purity of allylboronates was determined to be >97% by GC.
f Catalyst (10 mol %) and 1.1 mmol of 2 were used. g Catalyst (10 mol %)
and 1.0 mmol of 2 were used at 50 °C in toluene.
(7) (a) Hoffmann, R. W.; Sander, T.; Hense, A. Liebigs Ann. Chem. 1993,
771-775. (b) Kruger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119,
7499-7504. (c) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002,
124, 898-899. (d) Yamamoto, Y.; Kurihara, K.; Yamada, A.; Takahashi,
M.; Takahashi, Y.; Miyaura, N. Tetrahedron 2003, 59, 537-542. (e)
Yamamoto, Y.; Takahashi, M.; Miyaura, N. Synlett 2002, 128-130. (f)
Goldberg, S. D.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002, 41, 807-
810. (g) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308-9309.
(h) Pietruszka, J.; Schone, N. Eur. J. Org. Chem. 2004, 5011-5019. (i)
Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411-1414.
(8) For the synthesis of optically active allylboron compounds with an
R-stereogenic center, see: (a) Midland, M. M.; Preston, S. B. J. Am. Chem.
Soc. 1982, 104, 2330-2331. (b) Hoffmann, R. W.; Landmann, B. Angew.
Chem., Int. Ed. Engl. 1984, 23, 437-438. (c) Hoffmann, R. W.; Dresely,
S. Angew. Chem., Int. Ed. Engl. 1986, 25, 189-190. (d) Sturmer, R.
Angew. Chem., Int. Ed. Engl. 1990, 29, 59-60. (e) Roush, W. R.; Ando,
K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc.
1990, 112, 6339-6348. (f) Beckmann, E.; Desai, V.; Hoppe, D. Synlett
2004, 2275-2280. (g) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60,
4686-4687. (h) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002,
124, 13644-13645.
The reaction also offers an expeditious and general route to
optically active allylboronates that have a stereogenic carbon with
a boryl substituent.14 The reaction of (S)-(E)-1i (98% ee) with 2 in
the presence of Cu(I)-Xantphos catalyst (10 mol %) at 0 °C
underwent an R-to-γ chirality transfer accompanied by only a slight
loss of enantiomeric purity to afford (S)-(E)-3i (96% ee) along with
a small amount of the R-substituted E-isomer and γ-Z-isomer (eq
1). On the other hand, the reaction of (S)-(Z)-1i (97% ee), the
Z-isomer with the same configuration at the chiral center as (S)-
(E)-1i, afforded (R)-(E)-3i (97% ee), the antipode of the product
derived from (S)-(E)-1i, with complete chirality transfer and
γ-selectivity (eq 2). The observed stereochemical outcome can be
explained by the anti-attack of the borylcopper to an allyl carbonate
in a conformation that avoids an allylic 1,3-strain.15
(9) For the synthesis of chiral allylboron compounds with chiral auxiliaries,
see: (a) Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978,
17, 768-769. (b) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207-
2293. (c) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23-35. See
also ref 1.
(10) For asymmetric synthesis of â-boryl allylic boronates by diboration of
allenes, see: Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.;
Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328-16329.
(11) Kranenburg, M.; Vanderburgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen,
P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081-
3089.
(12) (a) Ito, H.; Watanabe, A.; Sawamura, M. Org. Lett. 2005, 7, 1869-1871.
(b) Ito, H.; Takagi, K.; Miyahara, T.; Sawamura, M. Org. Lett. 2005, 7,
3001-3004.
(13) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000,
41, 6821-6825.
(14) Optically active (E)-allylsilanes were synthesized from optically active
allylic alcohols with highly efficient chirality transfer. See: Suginome,
M.; Matsumoto, A.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3061-3062.
(15) Breit, B.; Demel, P. In Modern Organocopper Chemistry; Krause, N.,
Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2002; pp 188-223.
In conclusion, the γ-selective and stereospecific copper-catalyzed
substitution of allylic carbonates with a diboron reagent offers a
convenient and powerful method for the synthesis of allylboronates.
Investigations into the asymmetric synthesis of allylboronates based
JA056099X
9
J. AM. CHEM. SOC. VOL. 127, NO. 46, 2005 16035