J.-M. Huang et al. / Tetrahedron Letters 48 (2007) 3375–3377
3377
terminal olefins. For allylbenzenes (entries 8 and 9), 3-
References and notes
hydroamination products were minimum as the internal
olefins (prop-1-enylbenzenes), isomerized from the ter-
minal olefins, could not furnish the desired hydroamin-
ation product under our conditions.
1. For recent reviews, see: (a) Hong, S.; Marks, T. Acc. Chem.
Res. 2004, 37, 673–686; (b) Beller, M.; Seayad, J.; Tillack,
A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368; (c)
Molander, G. A.; Romero, A. C. Chem. Rev. 2002, 102,
2161–2185; (d) Senn, H. M.; Blo¨chl, P. E.; Togni, A. J. Am.
Noticeably, the reaction also worked well with alkylsulf-
onamides (Eq. 1). But with other nitrogen-based mole-
cules, such as anilines (11) and carbamates (12, 13),
reactions gave no desired products.
Chem. Soc. 2000, 122, 4098–4107; (e) Muller, T. E.; Beller,
¨
M. Chem. Rev. 1998, 98, 675–703.
2. For recent examples, see: (a) Liu, X.-Y.; Li, C.-H.; Che,
C.-M. Org. Lett. 2006, 8, 2007–2710; (b) Zhang, J. L.;
Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798–
1799; (c) Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett.
2006, 8, 3561–3564; (d) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J.
Am. Chem. Soc. 2003, 125, 12584–12605; (e) Utsunomiya,
M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14286–
14287; (f) Utsunomiy, M.; Kuwano, R.; Kawatsura, M.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 5608–5609; (g)
Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002,
122, 9546–9547; (h) Waster, J.; Nambu, H.; Carreira, E. J.
Am. Chem. Soc. 2005, 127, 8294–8295; (i) Anderson, L. L.;
Amold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127,
14542–14543; (j) Karshtedt, D.; Bell, A. T.; Tilley, T. D. J.
Am. Chem. Soc. 2005, 127, 12640–12646; (k) Brunet, J. J.;
Cadena, M.; Chu, N. C.; Diallo, O.; Jacob, K.; Mothes, E.
Organometallics 2004, 23, 1264–1268; (l) Wang, X.;
Widenhoefer, R. A. Organometallics 2004, 23, 1649–1651;
InBr3 (0.2 mmol)
NHMs
+
MsNH2
1 mmol
toluene (2 mL), 16 h, 120 0C
4 mmol
Yield 82%
ð1Þ
O
O
NH2
H2N
OBu-n
H2N
OBn
11
12
13
It was interesting to note that this reaction also worked
in the presence of small amount of water (Eq. 2). Unfor-
tunately, the reactions with unprotected hydroxyl con-
taining olefins (14 and 15) did not furnish the desired
products. For styrene (16), a mixture of undeterminable
polymerized products was observed.
´
´
(m) Barluenga, J.; Jimenez, C.; Najera, C.; Yus, M.
J. Chem. Soc., Perkin Trans. 1 1984, 721–725; (n) For
alkali metal catalyzed reactions, see Ref. 1b.
3. For recent review, see: Loh, T.-P.; Chua, G.-L. Chem.
Commun. 2006, 2739–2749.
4. Illustrative experimental procedure (synthesis of N-cyclo-
hexyl-p-toluenesulfonamide): To a 15 mL sealed tube was
added p-toluenesulfonamide (171.2 mg, 1.0 mmol), cyclo-
hexene (0.4 mL, 4.0 mmol), InBr3 (70.8 mg, 0.2 mmol) and
followed by toluene (2 mL). After shaking, the tube was
sealed and heated in an oil bath at 120 ꢁC. The reaction
was left at this temperature for 16 h. After the sealed tube
was slowly cooled to room temperature, the solvent was
removed by Rotary Evaporator, and the residue was
purified using flash silica gel chromatography to afford a
product (231.8 mg, 92%); white solid; Rf = 0.40 (ethyl
acetate/hexane = 1:4). FTIR (KBr) cmꢀ1: 3246, 3063,
3053, 2934, 2851, 2801, 1597, 1497, 1443, 1323, 1155,
1094, 989, 883, 816, 667, 575, 546; 1H NMR (300 MHz,
CDCl3): d 7.77 (d, J = 8.3 Hz, 2H, PhH), d 7.31 (d,
J = 8.0 Hz, 2H, PhH), d 4.30 (d, J = 7.1 Hz, 1H, NH), d
3.23–3.09 (m, 1H, NHCH), d 2.45 (s, 3H, PhCH3), d
1.82–1.73 (m, 2H, CH2), d 1.70–1.62 (m, 2H, CH2), d 1.33–
1.08 (m, 6H, 3 · CH2); 13C NMR (100 MHz, CDCl3): d
143.1, 138.5, 129.6, 126.9, 52.6, 33.8, 25.1, 24.6, 21.5;
HRMS Calcd for C13H19NO2S [M+]: 253.1136. Found:
253.1105.
5. (a) Teo, Y.-J.; Loh, T.-P. Chem. Commun. 2005, 1318–1320;
(b) Teo, Y.-J.; Goh, J.-D.; Loh, T.-P. Org. Lett. 2005, 7,
2743–2745; (c) Lu, J.; Hong, M.-L.; Ji, S.-J.; Loh, T.-P.
Chem. Commun. 2005, 1010–1012; (d) Teo, Y.-J.; Goh,
J.-D.; Loh, T.-P. Org. Lett. 2005, 7, 2539–2541; (e) Lu, J.;
Ji, S.-J.; Teo, Y.-C.; Loh, T.-P. Org. Lett. 2005, 7, 159–161;
(f) Lu, J.; Ji, S.-J.; Loh, T.-P. Chem. Commun. 2005, 2345–
2347; (g) Teo, Y.-J.; Goh, E.-L.; Loh, T.-P. Tetrahedron
Lett. 2005, 46, 4573–4575; (h) Teo, Y.-J.; Goh, E.-L.; Loh,
T.-P. Tetrahedron Lett. 2005, 46, 6209–6211; (i) Lu, J.; Ji,
S.-J.; Teo, Y.-J.; Loh, T.-P. Tetrahedron Lett. 2005, 46,
7435–7437.
toluene : water =20:1 (2 mL)
NHR
+
RNH2
InBr3 (0.2 mmol)
stirring for 16 h, 120 C
º
1 mmol
Yield 76% (R=Ts)
81% (R=Ms)
4 mmol
ð2Þ
OH
OH
14
16
15
In summary, InBr3 had been found to be a good catalyst
for the intermolecular hydroamination of simple olefins
to afford Markovnikov addition products. It is notewor-
thy that as an air and water stable Lewis acid, InBr3
catalyzed the reaction in the presence of water. Further
work is to explore the scope of the reaction, and stereo-
selective hydroamination using chiral Indium com-
plexes5 is also under investigation.
Acknowledgments
The authors thank the financial support from the Nan-
yang Technological University and the Key Laboratory
of Organic Synthesis of Jiangsu Province (Project No.
KJS0613).