Krumova et al.
TABLE 2. Spectroscopic Properties for PMOH, PM605, B-TOH, and B-BHB
compd
solvent
abs λmax (nm)
Em λmax (nm)
Φf
τdec (ns)
τrad (ns)
τnr (ns)
Eg (eV)
hexanes
acetonitrile
toluene
543
536
545
557
552
560
0.832
0.838
0.995
6.57 ( 0.02
6.90 ( 0.02
6.02 ( 0.02
7.9
8.2
6.1
39.0
42.5
1187.0
2.26
2.28
2.25
PMOH
hexanes
acetonitrile
toluene
546
542
549
561
561
566
0.755
0.722
0.894
6.31 ( 0.02
6.76 ( 0.02
6.43 ( 0.02
8.4
9.4
7.2
25.8
24.3
60.8
2.25
2.26
2.23
PM605
B-TOH
B-BHB
hexanes
acetonitrile
toluene
549
544
549
555
565
567
0.063
0.039
0.137
0.44 ( 0.02
0.74 ( 0.02
0.92 ( 0.02
6.9
18.9
6.7
0.47
0.77
1.1
2.24
2.26
2.22
hexanes
acetonitrile
toluene
545
540
549
564
560
567
0.764
0.450
0.882
6.75 ( 0.02
6.79 ( 0.02
5.94 ( 0.02
8.8
15.1
6.7
28.6
12.4
50.2
2.25
2.26
2.23
+•/D
having a methyl substituent in position 8 and ethyl (PM567),
n-butyl (PM580) and isobutyl (PM597) substituents in positions
2 and 6 (note that PMOH has an hydroxyl group in position 8
window. As such, we may estimate that EDo
> 1.25 eV (vs
Fc/Fc+) for 3,5-di-tert-butyl-4-hydroxybenzoic acid, far above
the 0.76 V threshold. We may thus infer that for the system
consisting of PM605 and 3,5-di-tert-butyl-4-hydroxybenzoic
acid, intermolecular PeT will be endergonic. Consistent with
this assumption, no BODIPY quenching is observed in the
presence of 3,5-di-tert-butyl-4-hydroxybenzoic acid (vide infra).
Complementary to our experimental work, we conducted DFT
calculations. The calculations on the HOMO energy levels
relative to vacuum were performed at the B3LYP/6-31G(d)
level.30,31 Figure 8 displays the HOMO values calculated for
the reporter precursor PM605, the receptor precursors trolox
and 3,5-di-tert-butyl-4-hydroxybenzoic acid adduct (BHB in the
plot), and the oxidized receptors trolox chromanone and
duroquinone (duroquinone was chosen as a suitable model for
trolox chromaquinone). Trolox is observed to have the HOMO
at higher energy values than the HOMO of the reporter segment
(PM605), whereas oxidized trolox (either in a chromanone or
chromaquinone form) or 3,5-di-tert-butyl-4-hydroxybenzoic acid
all have their HOMO lying at significantly lower energy values
with respect to PM605. As such electron transfer to the
photoexcited receptor can only be exergonic in the case of trolox,
whereas it will be endergonic for the oxidized receptor and 3,5-
di-tert-butyl-4-hydroxybenzoic acid.
and ethyl substituents in positions 2 and 6, see Figure 1). For
o
-•
PM567, PM580, and PM597 the reported EB/B values range
between 0.53 to 0.60 V and those for EoB /B range between -1.66
+•
to -1.71 V (values originally reported vs SCE, converted herein
to values vs Fc/Fc+).27
o
-•
The one-electron redox potential for PMOH (EB/B ) was
found to be -1.56 V (vs Fc/Fc+). The EB/B value for PM605
o
-•
could not be directly determined since it undergoes an irrevers-
ible reaction. This value may however be estimated from the
spectroscopic HOMO-LUMO gap (Eg) and the electrochemical
oxidation potential value of +0.70 V obtained for PM605. In
effect, there is a good agreement between both electrochemical
(Eg ) 2.18 eV) and spectroscopic (Eg ) 2.28 eV, see Table 2)
HOMO-LUMO gaps for PMOH in acetonitrile. Assuming both
electrochemical and spectroscopic Eg values are similar for
o
PM605, we may then estimate EB/B from Eg - EBo
(see
-•
+•/B
Tables 1 and 2 for PM605 EBo and Eg values in acetonitrile,
respectively). A value of EB/B ) -1.53 V was found for PM605.
+•
/B
o
-•
Under most experimental conditions, the oxidation of phenols
occur concomitant with deprotonation of the radical cation
formed, and as such irreversible oxidation waves are generally
obtained.28 Given the difficulty in obtaining reliable one-electron
Steady-State and Time-Resolved Fluorescence. Experi-
ments performed with PM605 and increasing concentrations of
trolox or 3,5-di-tert-butyl-4-hydroxybenzoic acid are consistent
with the expectations based on eq 15. Thus, no intermolecular
quenching of PMOH is observed when 3,5-di-tert-butyl-4-
hydroxybenzoic acid is used as a quencher (see Figure 6).
Trolox, on the other hand, efficiently quenches the PMOH
emission, from the analysis of the I0/I ratio vs trolox concentra-
oxidation potential for phenols (EoD /D) we used the literature
+•
value of 0.6 V vs Fc/Fc+ recently reported by Webster et al.
for the oxidation potential of trolox ethyl ester.29
Consistent with our original hypothesis,5 PeT from trolox ester
(the electron donor D) to BODIPY (the electron acceptor A)
was found to be exergonic. We thus found that ∆GoeT is ca.
-0.15 eV for the PM605/trolox ethyl ester system in acetonitrile.
Upon rearranging eq 15, we may further estimate the
maximum value the receptor segment redox potential (EDo
)
+•
/D
(30) Gaussian 03, Revision C.02: Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N. ; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi,
J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J. ; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K. ; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski,
J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin,
R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford, CT, 2004.
may have which will satisfy that electron transfer to the
photoexcited reporter segment occurs spontaneously. For PM6O5
based sensors, the EDo
for the receptor segment has to be
+•/D
smaller than ca. 0.76 V in acetonitrile, i.e., EDo
∆E00 - ꢀ ) 0.76 V.
< EA/A
+
o
-•
+•/D
For 3,5-di-tert-butyl-4-hydroxybenzoic acid, the one-electron
redox potential is not observed within the acetonitrile solvent
(27) Lai, R. Y.; Bard, A. J. J. Phys. Chem. B 2003, 107, 5036–5042.
(28) (a) Moore, G. F.; Hambourger, M.; Gervaldo, M.; Poluektov, O. G.;
Rajh, T.; Gust, D.; Moore, T. A.; Moore, A. L. J. Am. Chem. Soc. 2008, 130,
10466–10467. (b) Williams, L., L.; Webster, R., D. J. Am. Chem. Soc. 2004,
126, 12441–50. (c) Webster, R. D. Acc. Chem. Res. 2007, 40, 251–257.
(29) Peng, H. M.; Webster, R. D. J. Org. Chem. 2008, 73, 2169–2175.
(31) Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density Functional
Theory; Second edition ed.; Wiley-VCH: Weinheim, Germany, 2000.
3648 J. Org. Chem. Vol. 74, No. 10, 2009