Communication
ChemComm
found to be dependent on its enantiomeric excess. This makes ee
determination possible.
Our study represents the first example of non-covalent and
non-coordinative binding of chiral analytes with a selector
modified transition metal complex in solution. These findings
open up the perspective of developing self-recognising stereo-
dynamic systems applicable in catalysis and beyond.
Generous financial support by the European Research Council
(ERC) for a Starting Grant (No. 258740, AMPCAT) is gratefully
acknowledged. G.S. acknowledges the Fonds der Chemischen
Industrie for a Ph.D. fellowship.
Notes and references
1 H. Jdrzejewska, M. Wierzbicki, P. Cmoch, K. Rissanen and
A. Szumna, Angew. Chem., Int. Ed., 2014, 53, 13760.
2 D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond, J. Am.
Chem. Soc., 2004, 126, 3674.
3 L. A. Joyce, M. S. Maynor, J. M. Dragna, G. M. da Cruz, V. M. Lynch,
J. W. Canary and E. V. Anslyn, J. Am. Chem. Soc., 2011, 133, 13746.
4 Z. Dai, X. Xu and J. W. Canary, Chirality, 2005, 17, S227.
5 J. F. Folmer-Andersen, V. M. Lynch and E. V. Anslyn, J. Am. Chem.
Soc., 2005, 127, 7986.
Fig. 4 NMR-spectra with varying amounts of phenylalanine analyte. (A)
1H-NMR spectra of 6 with 0, 2, 5 and 10 equivalents (S)-13. The amide NH
region of 6 is depicted. (B) 1H-NMR spectra of 6 with 2 equivalents of 13 of 0, 50
and 499% ee (S-enantiomer). The relative deviation of the initial resonance is
depicted. (C) 31P{1H}-NMR of 6 with 0, 2, 5 and 10 equivalents of (S)-12. (D)
31P{1H}-NMR of [(BIPHEP)Rh(COD)](BF4) with 0, 2, 5 and 10 equivalents of (S)-12.
6 P. Zhang and C. Wolf, Chem. Commun., 2013, 49, 7010.
7 J. M. Brown, Organometallics, 2014, 33, 5912.
8 N. W. Alcock, J. M. Brown and P. J. Maddox, J. Chem. Soc., Chem.
Commun., 1986, 1532.
9 K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham and
R. Noyori, Angew. Chem., Int. Ed., 1999, 38, 495.
The observed chemical shift of the Rax-enantiomer in case of an
analyte of 50% ee is the weighted average of 75% (Rax, SPhe) and 25%
(Rax, RPhe). This is why coalescence occurs for the signal splitting of
racemic 13 because the observed chemical shift for Rax is the 10 K. Mikami, K. Aikawa and T. Korenaga, Org. Lett., 2000, 3, 243.
weighted average of 50% (Rax, SPhe) and 50% (Rax, RPhe) while it is
11 T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada
and R. Noyori, J. Am. Chem. Soc., 1998, 120, 1086.
12 K. Mikami and S. Matsukawa, Nature, 1997, 385, 613.
the completely enantiomeric 50% (Sax, SPhe) and 50% (Sax, RPhe) for
Sax. The splitting correlates linearly with the ee of the added diamide 13 J. W. Faller, M. R. Mazzieri, J. T. Nguyen, J. Parr and M. Tokunaga,
Pure Appl. Chem., 1994, 66, 1463.
14 J. W. Faller and J. Parr, J. Am. Chem. Soc., 1993, 115, 804.
15 K. Mikami, H. Kakuno and K. Aikawa, Angew. Chem., Int. Ed., 2005,
analyte: 0.45 ppm splitting is observed for ten equivalents
enantiopure 13, while a value of 0.23 ppm is observed with the
same amount of analyte of 50% ee, which is in good agreement
with the theoretically halved value (see ESI† for a plot and
measurements with analyte of 25 and 75% ee). This represents
44, 7257.
16 T. Punniyamurthy, M. Mayr, A. S. Dorofeev, C. J. R. Bataille,
S. Gosiewska, B. Nguyen, A. R. Cowley and J. M. Brown, Chem.
Commun., 2008, 5092.
a rare example of a racemic complex for the determination of ee 17 K. Aikawa, Y. Takabayashi, S. Kawauchi and K. Mikami, Chem.
Commun., 2008, 5095.
18 M. Schmitkamp, D. Chen, W. Leitner, J. Klankermayer and
values by simply measuring NMR spectra and evaluating signal
splitting. The method is related to the pro-chiral solvating-agent
G. Francio, Chem. Commun., 2007, 4012.
`
(pro-CSA) concept recently reported by Hill and Ariga with 19 D. Chen, M. Schmitkamp, G. Francio, J. Klankermayer and
achiral porphyrine host molecules.26–28
W. Leitner, Angew. Chem., Int. Ed., 2008, 47, 7339.
20 (a) R. ter Halle, B. Colasson, E. Schulz, M. Spagnol and M. Lemaire,
In conclusion, we described the 5,50-diamino-BIPHEP ligand
Tetrahedron Lett., 2000, 41, 643; (b) M. Berthod, C. Saluzzo,
as a versatile starting point for the synthesis of selector mod-
ified stereodynamic ligands. Our investigations were focused
on the corresponding complexes obtained with rhodium(I), yet
further applications may arise from immobilization of the
ligands or formation of ionic adducts.
The rhodium complex bearing a 3,5-dichlorobenzoyl amide
functionalized 5,50-BIPHEP ligand was studied with regard of non- 22 K. Aikawa, Y. Miyazaki and K. Mikami, Bull. Chem. Soc. Jpn., 2012,
covalent binding of (S)-phenylalanine derivatives in solution. The
binding was followed by NMR spectroscopy and observation of
G. Mignani and M. Lemaire, Tetrahedron: Asymmetry, 2004,
15, 639; (c) M. Berthod, G. Mignani and M. Lemaire, J. Mol. Catal.
A: Chem., 2005, 233, 105.
21 (a) T. Okano, H. Kumobayashi, S. Akutagawa, J. Kiji, H. Konishi,
K. Fukuyama and Y. Shimano, US Pat., 4 705 895, 1987; (b) Q.-h. Fan,
C.-y. Ren, C.-h. Yeung, W.-h. Hu and A. S. C. Chan, J. Am. Chem. Soc.,
1999, 121, 7407; (c) Q.-H. Fan, Y.-M. Chen, X.-M. Chen, D.-Z. Jiang,
F. Xi and A. S. C. Chan, Chem. Commun., 2000, 789.
85, 201.
23 (a) F. Maier and O. Trapp, Angew. Chem., Int. Ed., 2014, 53, 8756;
(b) F. Maier and O. Trapp, Chirality, 2013, 25, 126; (c) G. Storch and
signal splitting due to formation of (Rax, SPhe) and (Sax, SPhe) adducts.
The extent of splitting was found to be dependent on the substitu-
tion pattern of the phenylalanine analyte and additionally on its
concentration. Diamides were plausibly found to bind more effi-
ciently compared to amidoester derivatives. Introduction of electron
rich aromatic substituents seemed to be of subaltern effect. The
extent of signal splitting due to binding of the analytes was also
O. Trapp, Angew. Chem., Int. Ed., 2015, 54, 3580.
24 O. Diels and A. Bibergeil, Ber. Dtsch. Chem. Ges., 1902, 35, 302.
25 CCDC 1415494, compound (6).
´
26 J. Labuta, J. P. Hill, S. Ishihara, L. Hanykova and K. Ariga, Acc. Chem.
Res., 2015, 48, 521.
27 A. Shundo, J. Labuta, J. P. Hill, S. Ishihara and K. Ariga, J. Am. Chem.
Soc., 2009, 131, 9494.
ˇ
´
28 J. Labuta, S. Ishihara, T. Sikorsk´y, Z. Futera, A. Shundo, L. Hanykova,
J. V. Burda, K. Ariga and J. P. Hill, Nat. Commun., 2013, 4, 2188.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015