Hajdok et al.
JOCArticle
allow the resource-conserving and efficient construction
of benzofurans and annulated benzofurans in a single syn-
thetic operation. Enzyme-catalyzed reactions are of increasing
importance in organic synthesis7 as they allow a multitude of
selective and efficient transformations to be run in aqueous
systems at room temperature. In addition, many enzyme
catalyzed transformations fulfill a number of the principles
of green chemistry.8 A main area is the development of
enzyme-catalyzed oxidations.9 Oxidative transformations are
particularly attractive if aerial oxygen can be used as an
oxidant because atmospheric oxygen is inexhaustible and free
of cost. In addition, the only waste product formed upon
reduction of oxygen is water which is completely safe and
nontoxic. Reactions that combine several enzyme catalyzed
transformations or enzyme and chemically catalyzed transfor-
mations to make up new reaction sequences are even more
interesting than single-step enzymatic transformations.10,11
In this respect, laccases12 are particularly attractive en-
zymes as they can be used to catalyze oxidations which are
capable of triggering domino processes. Laccases (benzene-
diol: O2 oxidoreductase E.C. 1.10.3.2.) mainly occur in fungi,
but also in plants and some prokaryotes. In general, they
are easy to isolate, and some of them are even commer-
cially available. The best known laccases include the enzymes
isolated from Agaricus bisporus and Trametes versicolor. Lac-
cases are multicopper oxidases which are able to catalyze the
selective oxidation of a number of substrates under mild reac-
tion conditions with simultaneous reduction of O2 to give
H2O.13 By using mediators, the redox potential of laccases
can be changed which allows the oxidation of substrates
with a higher redox potential. Laccases have been employed
for the oxidation of aromatic methyl groups,14 benzylic,
allylic, and aliphatic alcohols,15 ethers,16 benzylamines, and
hydroxylamines.17 Relatively few studies have so far been
published on the combination of a laccase-catalyzed oxida-
tion with another enzyme or with a chemically catalyzed
transformation to make up new domino reactions.18 Recently,
we have reported on the combination of a laccase-catalyzed
oxidation of catechols with 1,4-additions of 1,3-dicarbonyls.19
We could demonstrate that 4-hydroxy-6-methyl-2H-pyran-2-
one and cyclohexane-1,3-diones, respectively, can be reacted
with catechols to efficiently produce 1H-pyrano-[4,3-b]-
benzofuran-1-ones19a and 3,4-dihydro-7,8-dihydroxy-2H-
dibenzofuran-1-ones,19b respectively. Similar reactions have
been reported by Ragauskas et al.20 They also studied the
intermolecular Diels-Alder reaction of o-and p-benzoqui-
nones, which were generated by laccase-catalyzed oxidations
of catechols and hydroquinones, respectively, with several
dienes.21
(3) For reviews, see: (a) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Curr.
ꢀ
Org. Chem. 2006, 10, 1423. (b) Kadieva, M. G.; Oganesyan, E. T. Chem.
Heterocycl. Compd. 1997, 33, 1245. (c) Stadlbauer, W.; Kappe, T. Hetero-
cycles 1993, 35, 1425. (d) Donelly, D. M. X.; Meegan, M. J. In Comprehensive
Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press:
Oxford, 1984; Vol. 4, pp 657. (e) Cagniant, P.; Cagniant, D. Adv. Heterocycl.
Chem. 1975, 18, 337.
(4) (a) Takeda, N.; Miyata, O.; Naito, T. Eur. J. Org. Chem. 2007, 1491.
(b) Yao, T; Yue, D.; Larock, R. C. J. Comb. Chem. 2005, 7, 809. (c) da Silva,
A. J. M.; Netto, C. D.; Costa, P. R. R. J. Braz. Chem. Soc. 2004, 15, 979.
(d) Miyata, O.; Takeda, N.; Naito, T. Org. Lett. 2004, 6, 1761. (e) Kao,
C.-L.; Chern, J.-W. J. Org. Chem. 2002, 67, 6772. (f) Lee, Y. R.; Suk, J. Y.;
Kim, B. S. Org. Lett. 2000, 2, 1387. (g) Kraus, G. A.; Zhang, N. J. Org.
Chem. 2000, 65, 5644. (h) Stadlbauer, W.; Laschober, R.; Kappe, T.
Liebigs Ann. 1990, 531. (i) Singh, R. P.; Singh, D. Heterocycles 1985,
23, 903. (j) Yamaguchi, S.; Yoshimoto, Y.; Murai, R.; Masuda, F.; Yamada,
M.; Kawase, Y. J. Heterocycl. Chem. 1984, 21, 737. (k) Kawase, Y.;
Yamaguchi, S.; Morita, M.; Uesugi, T. Bull. Chem. Soc. Jpn. 1980,
53, 1057.
(5) (a) Tadd, A. C.; Fielding, M. R.; Willis, M. C. Tetrahedron Lett. 2007,
48, 7578. (b) Liang, Y.; Tang, S.; Zhang, X.-D.; Mao, L.-Q.; Xie, Y.-X.; Li,
J.-H. Org. Lett. 2006, 8, 3017. (c) Yao, T.; Yue, D.; Larock, R. C. J. Org.
Chem. 2005, 70, 9985. (d) Li, C. C.; Xie, Z. X.; Zhang, Y. D.; Chen, J. H.;
Yang, Z. J. Org. Chem. 2003, 68, 8500. (e) Hiroya, K; Suzuki, N.; Yasuhara,
A.; Egawa, Y.; Kasano, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1
2000, 4339. (f) Laschober, R.; Kappe, T. Synthesis 1990, 387.
(13) (a) Witayakran, S.; Ragauskas, A. J. Adv. Synth. Catal. 2009, 351,
1187. (b) Kunamneni, A.; Camarero, S.; Garcia-Burgos, C.; Plou, F. J.;
Ballesteros, A.; Alcalde, M. Microbial Cell Fact. 2008, 7, 32. (c) Xu, F.;
Damhus, T.; Danielsen, S; Østergaard, L. H. In Modern Biooxidations. Enzymes,
Reactions and Applications; Schmid, R. D., Urlacher, V., Eds.; Wiley-VCH:
Weinheim, 2007; p 43. (d) Riva, S. Trends Biotechnol. 2006, 24, 219. (e) Burton,
S. G. Curr. Org. Chem. 2003, 7, 1317.
(14) (a) Fritz-Langhals, E.; Kunath, B. Tetrahedron Lett. 1998, 39, 5955.
(b) Potthast, A.; Rosenau, T.; Chen, C.-L.; Gratzl, J. S. J. Org. Chem. 1995,
60, 4320.
(6) (a) Leutbecher, H.; Hajdok, Sz.; Braunberger, C.; Neumann, M.;
€
Mika, S.; Jurgen, C.; Beifuss, U. Green Chem. 2009, 11, 676. (b) Gabriele, B.;
Mancuso, R.; Salerno, G.; Costa, M. J. Org. Chem. 2007, 72, 9278. (c) Lu, B.;
Wang, B.; Zhang, Y.; Ma, D. J. Org. Chem. 2007, 72, 5337. (d) Davarani, S.
S. H.; Shamsipur, M.; Nematollahi, D.; Ramyar, S.; Masoumi, L. Chem.
Pharm. Bull. 2007, 55, 1198. (e) Gabriele, B.; Mancuso, R.; Salerno, G.;
Costa, M. Adv. Synth. Catal. 2006, 348, 1101. (f) Fakhari, A. R.; Nematol-
lahi, D.; Moghaddam, A. B. Electrochim. Acta 2005, 50, 5322. (g) Chauder,
B. A.; Kalinin, A. V.; Taylor, N. J.; Snieckus, V. Angew. Chem., Int. Ed. 1999,
38, 1435.
(7) For reviews, see: (a) Faber, K. Biotransformation in organic chemistry;
Springer: Berlin, 2004. (b) Bornscheuer, U. T.; Kazlauskas, R. J. Angew. Chem.,
Int. Ed. 2004, 43, 6032. (c) Drauz, K.; Waldmann, H. Enzyme Catalysis in
Organic Synthesis; Wiley-VCH: Weinheim, 2002.
(15) (a) Astolfi, P.; Brandi, P.; Galli, C.; Gentili, P; Gerini, M. F.;
Greci, L.; Lanzalunga, O. New J. Chem. 2005, 29, 1308. (b) Fabbrini, M.;
Galli, C.; Gentili, P.; Macchitella, D. Tetrahedron Lett. 2001, 42, 7551.
(c) Potthast, A.; Rosenau, T.; Chen, C. L; Gratzl, J. S. J. Mol. Catal. A:
Chem. 1996, 108, 5.
ꢁ
(16) dAcunzo, F.; Baiocco, P.; Galli, C. New. J. Chem. 2003, 27, 329.
(17) Wells, A.; Teria, M.; Eve, T. Biochem. Soc. Trans. 2006, 34, 304.
(18) (a) Kidwai, M.; Poddar, R.; Diwaniyan, S.; Kuhad, R. C. Adv. Synth.
Catal. 2009, 351, 589. (b) Ganachaud, C.; Garfagnoli, V.; Tron, T.; Iacazio,
G. Tetrahedron Lett. 2008, 49, 2476. (c) Mikolasch, A.; Niedermeyer, T. H.
J.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Gesell Salazar,
(8) Anastas, P. T.; Warner, J. C. Green Chemistry Theory and Practice;
Oxford University Press: Oxford, 1998.
(9) (a) Ullrich, R.; Hofrichter, M. Cell. Mol. Life Sci. 2007, 64, 271. (b)
Schmid, R. D.; Urlacher, V. Modern Biooxidations. Enzymes, Reactions and
Applications; Wiley-VCH: Weinheim, 2007. (c) Bernhardt, R. J. Biotechnol.
2006, 124, 128. (d) Urlacher, V. B.; Eiben, S. Trends Biotechnol. 2006, 24, 324.
(e) van Beilen, J. B.; Duetz, W. A.; Schmid, A.; Witholt, B. Trends Biotechnol.
2003, 21, 170. (f) Li, Z.; van Beilen, J. B.; Duetz, W. A.; Schmid, A.; de Raadt, A.;
Griengl, H.; Witholt, B. Curr. Opin. Chem. Biol. 2002, 6, 136.
€
M.; Hessel, S.; Julich, W.-D.; Lindequist, U. Chem. Pharm. Bull. 2007, 55,
412. (d) Mikolasch, A.; Niedermeyer, T. H. J.; Lalk, M.; Witt, S.; Seefeldt, S.;
€
Hammer, E.; Schauer, F.; Gesell, M.; Hessel, S.; Julich, W.-D.; Lindequist,
U. Chem. Pharm. Bull. 2006, 54, 632. (e) Niedermeyer, T. H. J.; Mikolasch,
A.; Lalk, M. J. Org. Chem. 2005, 70, 2002. (f) Mikolasch, A.; Hammer, E.;
Jonas, U.; Popowski, K.; Stielow, A.; Schauer, F. Tetrahedron 2002, 58, 7589.
(g) Eggert, C.; Temp, U.; Dean, J. F. D.; Eriksson, K.-E. L. FEBS Lett. 1995,
376, 202.
(19) (a) Leutbecher, H.; Conrad, J.; Klaiber, I.; Beifuss, U. Synlett 2005,
3126. (b) Hajdok, Sz.; Leutbecher, H.; Greiner, G.; Conrad, J.; Beifuss, U.
Tetrahedron Lett. 2007, 48, 5073.
(10) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2006.
(11) (a) Garcia-Junceda, E. Multi-Step Enzyme Catalysis; Wiley-VCH:
ꢁ
Weinheim, 2008. (b) Pellissier, H. Tetrahedron 2008, 64, 1563. (c) Pamies, O.;
€
Backvall, J.-E. Chem. Rev. 2003, 103, 3247. (d) Glueck, S. M.; Mayer, S. F.;
Kroutil, W.; Faber, K. Pure Appl. Chem. 2002, 74, 2253.
(20) (a) Witayakran, S.; Ragauskas, A. J. Eur. J. Org. Chem. 2009, 358.
(b) Witayakran, S.; Geldbaum, L.; Ragauskas, A. J. Tetrahedron 2007, 63,
10958.
(21) (a) Witayakran, S.; Ragauskas, A. J. Green Chem. 2007, 9, 475. (b)
Witayakran, S.; Zettili, A.; Ragauskas, A. J. Tetrahedron Lett. 2007, 48,
2983.
(12) (a) Morozova, O. V.; Shumakovich, G. P.; Gorbacheva, M. A.;
Shleev, S. V.; Yaropolov, A. I. Biochemistry (Moscow, Russ. Fed.) 2007,
72, 1136. (b) Claus, H. Micron 2004, 35, 93. (c) Mayer, A. M.; Staples,
R. C. Phytochemistry 2002, 60, 551. (d) Thurston, C. F. Microbiology 1994,
140, 19.
J. Org. Chem. Vol. 74, No. 19, 2009 7231