Paper
NJC
of sodium acetate were added under an argon atmosphere. The Notes and references
resulting mixture was stirred at 50 1C for 2 h and then for 2–3 h
1
2
L. Wang and Q. Li, Chem. Soc. Rev., 2018, 47, 1044.
Y. Wakayama, R. Hayakawa, K. Higashiguchi and K. Matsuda,
J. Mater. Chem. C, 2020, 8, 10956.
at room temperature until the complete consumption of TCF
monitored by TLC. The obtained solid product was filtered off,
washed 3 times with 2 ml of ethanol and then dried in a vacuum
3
L. Dong, Y. Feng, L. Wang and W. Feng, Chem. Soc. Rev.,
2
drying cabinet (1 torr) over CaCl for 3 days.
2018, 47, 7339.
3
.3 Spectral characterization of compound 1
4 H. Nie, J. L. Self, A. S. Kuenstler, R. C. Hayward and J. Read
de Alaniz, Adv. Opt. Mater., 2019, 7, 1900224.
5 T. Fukaminato, S. Ishida and R. M ´e tivier, NPG Asia Mater.,
2018, 10, 859.
Orange solid; mp 4330 1C (dec.); yield 87%; IR (mineral oil,
v, cm ): 3400–3050 br. (OH), 2240, 2223 (CRN), 1586 (CQC),
ꢀ
1
1
1041 (OQSQO). H NMR (500.13 MHz, DMSO-d
6
) d: 1.79 (6H, s,
6
Z. Li, C. He, Z. Lu, P. Li and Y.-P. Zhu, Dyes Pigm., 2020,
82, 108623.
H. Cheng, J. Yoon and H. Tian, Coord. Chem. Rev., 2018, 372, 66.
2CH ), 6.90 (1H, d, J = 8.5 Hz, C H ), 7.51 (1H, d, J = 16.5 Hz,
3
6
3
1
CH =), 7.59 (1H, dd, J = 2.1, 8.5 Hz, C H ), 8.04 (1H, d, J = 2.1, Hz,
6
3
7
C
H
6 3
), 8.12 (1H, d, J = 16.5 Hz, CH =), 11.08 (1H, s, OH).
C NMR (125.76 MHz, DMSO-d ): d 25.28, 53.85, 98.12, 99.27,
1
3
8 Z. L. Pianowski, Chem. – Eur. J., 2019, 25, 5128.
S. Jia, W.-K. Fong, B. Graham and B. J. Boyd, Chem. Mater.,
018, 30, 2873.
6
9
1
1
1
1
11.22, 112.04, 112.87, 115.81, 120.25, 128.38, 131.53, 140.19,
44.37, 158.72, 176.55, 177.25. MS, (EI, 70 eV): m/z (%) 303 (4),
84 (100). Anal. Calcd. for C18
0.37. Found: C, 55.17; H, 3.08; N, 10.19.
2
10 C. Berton, D. M. Busiello, S. Zamuner, E. Solari, R. Scopelliti,
12 3 5
H N NaO S: C, 55.35; H, 2.98; N,
F. Fadaei-Tirani, K. Severin and C. Pezzato, Chem. Sci., 2020,
11, 8457.
11 A. Elgattar, N. Abeyrathna and Y. Liao, J. Phys. Chem. B,
2019, 123, 648.
4
. Conclusions
1
2 T. Halbritter, C. Kaiser, J. Wachtveitl and A. Heckel, J. Org.
Chem., 2017, 82, 8040.
Thus, the first representative of nitrile-rich dyes exhibiting
visible-light-induced negative photochromism in water over a
wide pH range was synthesized. The pH sensitivity of this
compound along with the possibility of adjusting the color of
the aqueous solution from yellow to magenta by changing the
pH was shown. The dark reaction rate of the synthesized
photochrome increased with an increase of the pH of the
aqueous medium, which was associated with an increase in
the ionization of the photoinduced acid. The increase of pH to
13 N. Abeyrathna and Y. Liao, J. Phys. Org. Chem., 2016, 30, e3664.
¨
1
4 C. Ozçoban, T. Halbritter, S. Steinwand, L.-M. Herzig, J. Kohl-
Landgraf, N. Askari, F. Groher, B. F u¨ rtig, C. Richter,
H. Schwalbe, B. Suess, J. Wachtveitl and A. Heckel, Org. Lett.,
2015, 17, 1517.s.
1
5 P. Rem o´ n, S. M. Li, M. Grøtli, U. Pischel and J. Andr ´e asson,
Chem. Commun., 2016, 52, 4659.
1
6 D. Moldenhauer and F. Gr ¨o hn, Chem. – Eur. J., 2017, 23, 3966.
17 D. Samanta and R. Klajn, Adv. Opt. Mater., 2016, 4, 1373.
18 M. J. Feeney and S. W. Thomas III, Macromolecules, 2018,
9
and higher made it possible to block the photochromic
reaction process due to the predominance of the non-photo-
chromic phenoxide form of the dye. The difference in the found
pK
51, 8027.
a
of the initial and photoinduced forms made it possible to
9 J. R. Nilsson, S. Li, B. Onfelt and J. Andr ´e asson, Chem.
¨
1
2
2
carry out a fully reversible pH change of the aqueous solution
on 1.2 units under irradiation using visible light. The observed
kinetics of the dark reaction of the photoinduced form showed
that varying the pH allowed the rate of the reverse reaction to be
significantly changed along with multicolor transformations by
changing the ratio of phenol and phenoxide forms. The
obtained results allowed us to assert that the data described
herein could become a powerful tool for modifying various
physicochemical characteristics of nitrile-rich photochromes
and, therefore, to be a starting point for a series of studies in
this direction.
Commun., 2011, 47, 11020.
0 C. Li, A. Iscen, L. C. Palmer, G. C. Schatz and S. I. Stupp,
J. Am. Chem. Soc., 2020, 142, 8447.
1 H. Liang, Y. Guo, Y. Shi, X. Peng, B. Liang and B. Chen,
Angew. Chem., Int. Ed., 2020, 59, 7732.
2
2
2 L. Kortekaas and W. R. Browne, Chem. Soc. Rev., 2019, 48, 3406.
3 R. Advincula, M.-K. Park, A. Baba and F. Kaneko, Langmuir,
2003, 19, 654.
2
2
4 H. Orlikowska, A. Sobolewska and S. Bartkiewicz, J. Mol.
Liq., 2020, 316, 113842.
5 J. Broichhagen, M. Sch o¨ nberger, S. C. Cork, J. A. Frank,
P. Marchetti, M. Bugliani, A. M. J. Shapiro, S. Trapp, G. A.
Rutter, D. J. Hodson and D. Trauner, Nat. Commun., 2014,
Conflicts of interest
5, 5116.
There are no conflicts to declare.
26 B. Koeppe and F. R o¨ mpp, Chem. – Eur. J., 2018, 24, 14382.
2
2
7 H. Cheng, P. Ma, Y. Wang, G. Hu, S. Fang, Y. Fang and
Y. Lin, Chem. – Asian J., 2016, 12, 248.
8 B. Roubinet, M. Weber, H. Shojaei, M. Bates, M. L. Bossi,
V. N. Belov, M. Irie and S. W. Hell, J. Am. Chem. Soc., 2017,
Acknowledgements
The research was performed with the financial support of the
Russian Science Foundation (Grant no. 18-73-10065).
139, 6611.
1
0294
|
New J. Chem., 2021, 45, 10287–10295
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021