Dalton Transactions
Paper
25 °C): δ −122.7 (d, 3J = 17.7 Hz, 6F, o-F), −150.6 (pst, 3J = 19.9
Hz, 3F, p-F), −160.5 (m, 6F, m-F) ppm.
8 H. Yamamoto, Lewis acids in organic synthesis, Wiley-VCH,
Weinheim, New York, Chichester, Brisbane, Singapore,
Toronto, 2000.
Isolation of Cp2Fe·Al(C6F5)3
9 W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345–354.
10 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015,
54, 6400–6441.
11 D. W. Stephan and G. Erker, Frustrated Lewis Pairs I & II,
Top. Curr. Chem., Springer-Verlag, Berlin, Germany, 2013.
12 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010,
49, 46–76.
13 E. Y.-X. Chen, in Encyclopedia of Reagents for Organic
Synthesis, John Wiley & Sons, Ltd, 2012, DOI: 10.1002/
047084289X.rn01382.
14 E. Y.-X. Chen, W. J. Kruper, G. Roof and D. R. Wilson,
J. Am. Chem. Soc., 2001, 123, 745–746.
In a glovebox, ferrocene (186 mg, 1.00 mmol) and Al(C6F5)3
(528 mg, 1.00 mmol, 1.00 equiv.) were dissolved in 2 mL of
1,2-dichlorobenzene. The mixture was layered with 2 mL of
hexanes and placed in a freezer at −30 °C. X-ray quality crystals
were developed overnight. The crystals were collected by fil-
tration, washed with hexanes (2 mL) twice, dried under
vacuum, affording 600 mg of the product (yield: 84%).
1H NMR (C6D5Br, 25 °C): δ 4.24 (br, 10H, Cp). 13C NMR (C6D5Br,
25 °C): δ 149.8, 142.3, 136.9, 111.4 (C6F5), 70.1 (Cp). 19F NMR
(C6D5Br, 25 °C): δ −120.4 (d, 3J = 16.9 Hz, 6F, o-F), −149.3 (pst,
3J = 19.9 Hz, 3F, p-F), −159.4 (m, 6F, m-F) ppm. Elemental ana-
lysis for C28H10AlF15Fe: calcd C 47.09, H 1.41; found C 46.95,
H 1.49%.
15 G. Menard and D. W. Stephan, Dalton Trans., 2013, 42,
5447–5453.
16 G. Menard, T. M. Gilbert, J. A. Hatnean, A. Kraft,
I. Krossing and D. W. Stephan, Organometallics, 2013, 32,
4416–4422.
17 E. Y.-X. Chen, Top. Curr. Chem., 2013, 334, 239–260.
18 Y. Zhang, G. M. Miyake, M. G. John, L. Falivene,
L. Caporaso, L. Cavallo and E. Y.-X. Chen, Dalton Trans.,
2012, 41, 9119–9134.
19 R. C. Neu, G. Menard and D. W. Stephan, Dalton Trans.,
2012, 41, 9016–9018.
20 G. Menard and D. W. Stephan, Angew. Chem., Int. Ed., 2012,
51, 4409–4412.
NMR scale reaction of Cp2Fe and Al(C6F5)3·(toluene)0.5
A Teflon-valve-sealed J. Young-type NMR tube was charged
with ferrocene (10.0 mg, 0.025 mmol), Al(C6F5)3·(toluene)0.5
(30.9 mg 0.025 mmol, 1.00 equiv.) and 0.7 mL of C6D5Br at
ambient temperature. The mixture was allowed to react for
10 min before NMR analysis, which indicates the adduct for-
mation between ferrocene and Al(C6F5)3. The NMR tube was
heated at 100 °C for 3 days. 1H and 19F NMR spectra were
recorded at different time intervals. The gradual color change
from red to dark green also indicates the oxidation of ferro-
cene, which was also confirmed by UV-Vis absorption study.
21 G. Menard and D. W. Stephan, Angew. Chem., Int. Ed., 2012,
51, 8272–8275.
22 Y. Zhang, G. M. Miyake and E. Y.-X. Chen, Angew. Chem.,
Int. Ed., 2010, 49, 10158–10162.
23 M. A. Dureen and D. W. Stephan, J. Am. Chem. Soc., 2009,
131, 8396–8397.
24 N. G. Stahl, M. R. Salata and T. J. Marks, J. Am. Chem. Soc.,
2005, 127, 10898–10909.
25 J. Chen and E. Y.-X. Chen, Angew. Chem., Int. Ed., 2015, 54,
6842–6846.
Acknowledgements
This work was supported by the United States National Science
Foundation (CHE-1507702). We thank Dr Roger A. Lalancette
for the generous access to the SC-XRD facility at Rutgers-
Newark for determining the structure of the alane–ferrocene
adduct and Boulder Scientific Co. for the research gift of
B(C6F5)3.
26 J. Chen and E. Y.-X. Chen, Molecules, 2015, 20, 9575–9590.
27 A. Y. Timoshkin and G. Frenking, Organometallics, 2008,
27, 371–380.
28 A. Rodriguez-Delgado and E. Y.-X. Chen, J. Am. Chem. Soc.,
2005, 127, 961–974.
Notes and references
1 S. Feng, G. R. Roof and E. Y.-X. Chen, Organometallics, 29 G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett and
2002, 21, 832–839. A. Voigt, J. Am. Chem. Soc., 1999, 121, 4922–4923.
2 C. H. Lee, S. J. Lee, J. W. Park, K. H. Kim, B. Y. Lee and 30 D. J. Parks, J. M. Blackwell and W. E. Piers, J. Org. Chem.,
J. S. Oh, J. Mol. Catal. A: Chem., 1998, 132, 231–239. 2000, 65, 3090–3098.
3 P. Biagini, G. Lugli, L. Abis and P. Andreussi, U.S. Pat, 31 C. A. Reed, Z. Xie, R. Bau and A. Benesi, Science, 1993, 262,
1997, 5, 5602269. 402–404.
4 A. G. Massey and A. J. Park, J. Organomet. Chem., 1966, 5, 32 J. B. Lambert, S. H. Zhang, C. L. Stern and J. C. Huffman,
218–225. Science, 1993, 260, 1917–1918.
5 A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 33 C. A. Reed, Acc. Chem. Res., 2010, 43, 121–128.
245–250.
34 T. Muller, Adv. Organomet. Chem., 2005, 53, 155–215.
35 C. A. Reed, Acc. Chem. Res., 1998, 31, 325–332.
6 W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1–76.
7 E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391– 36 J. Klosin, G. R. Roof, E. Y.-X. Chen and K. A. Abboud, Orga-
1434.
nometallics, 2000, 19, 4684–4686.
This journal is © The Royal Society of Chemistry 2015
Dalton Trans.