Table 1. Synthesis of Nonsymmetrical Diindolylmethanesa
Table 2. Synthesis of 3-Benzyl- and 3-Allylindoles from
Methiodides 8a
no.
1
3b
6 (%)c
no.
8
2
5, 9 (%)b
1
2
3
4
5
1a, R1) H, R2 ) H
1a, R1) H, R2 ) H
1a, R1) H, R2 ) H
1b, R1) CH3O, R2 ) H
1c, R1) H, R2 ) CH3O
3a
3b
3c
3c
3c
6a (62)
6a (73)
6a (81)
6b (79)
6c (74)
1
2
3
4
5
6
7
8
9
8a, R1) H, R2 ) H
8a, R1) H, R2 ) H
8a, R1) H, R2 ) H
8a, R1) H, R2 ) H
8a, R1) H, R2 ) H
2a, Ar ) Ph
2a, Ar ) Ph
2b, Ar ) 4-MeOC6H4 5b (77)d
2c, Ar ) 2-MeOC6H4
2d, Ar ) 4-CF3C6H4
5a (65)c
5a (85)d
5c (75)d
5d (82)d
5e (80)d
5f (76)d
5g (85)d
9a (82)d
9b (78)d
9c (65)d
9d (80)d
9e (75)d
a Reaction conditions: 1 (0.2 mol %), 3 (0.01 mol %), 7 (0.25 mol %),
K3PO4 (0.2 mol %), dioxane-H2O 10:1 (1.0 mL), 50 °C. b 3a, [(cod)RhCl]2;
3b, [(cod)2Rh]BF4; 3c, [(cod)IrCl]2. c Yield of the isolated product after
column chromatography on silica gel.
8b, R1) CH3O, R2 ) H 2d, Ar ) 4-CF3C6H4
8c, R1) H, R2 ) CH3O 2d, Ar ) 4-CF3C6H4
8a, R1) H, R2 ) H
8a, R1) H, R2 ) H
2e, Ar ) 2-BrC6H4
2f, R3 ) Ph
2g, R3 ) 4-CF3C6H4
2h, R3 ) 4-ClC6H4
10 8a, R1) H, R2 ) H
11 8a, R1) H, R2 ) H
12 8b, R1) CH3O, R2 ) H 2f, R3 ) Ph
13 8c, R1) H, R2 ) CH3O 2f, R3 ) Ph
and in fact, the Ir(I) complex 3c was found to be superior to
the Rh(I) compounds 3a or 3b.
Benzylic substitution of gramines 1 with boronic acids was
made possible when quaternizing the amino group in the
form of methiodides 8. The Me3N+ group in 8 is not able to
coordinate Rh(I), thus allowing for successful formation of
[R-RhI] species by transmetalation from boron to rhodium
(Scheme 3, Table 2). Reaction of compounds 8 with
a Reaction conditions: 1 (0.2 mol %), 2 (0.4 mol %), 3 (0.01 mol %),
K3PO4 (0.2 mol %), dioxane-H2O 8:2 (1.0 mL), 65 °C. b Yield of the isolated
product after column chromatography on silica gel. c Catalyst 3a, [(co-
d)RhCl]2. d Catalyst 3b, [(cod)2Rh]BF4.
the chloride dimer 3a (Table 2, entries 1 and 2). The reaction
was general for electron-rich, electron-deficient, or sterically
hindered ortho-substituted arylboronic acids (entries 2-8).
Similarly, the reaction with alkenylboronic acids 2f-h
produced the allylindoles 9 (entries 9-13).
Scheme 3. Rh(I)-Catalyzed Benzylic Substitution of
Methiodides 8 with Boronic Acids 2
This method for the synthesis of C-3 benzyl and allyl-
indoles is devoid from competition with the regiose-
lectivity problems usually found in some other synthetic
procedures.16
In conclusion, this paper demonstrates that under Rh(I)
catalysis, RB(OH)2 compounds are able to afford conju-
gate addition products with the CdC-CdN linkages gener-
ated in situ from the readily available gramine-MeI salts
used as starting materials, leading to C-3 benzyl and allyl
indole derivatives. Additionally, a new method for the
synthesis of nonsymmetrical diindolylmethanes has been
described, making use of gramines as starting materials in
combination with Ir(I) catalysis. All of these transformations
are carried out in a water-containing solvent, which can be
of interest from environmental and manufacturing stand-
points.
arylboronic acids 2a-e in the presence of K3PO4 under Rh-
(I) catalysis afforded the benzylic substitution products 5.
In this reaction, Rh(I) catalysis was superior to Ir(I) catalysis,
as in the latter case, only 4 was isolated. We also observed
better performance of the cationic Rh(I) complex 3b over
(15) 5-Bromoindole (7) was chosen as model example for the synthesis
of non-symmetrical diindolylmethanes. Further applications derived from
halogen-metal exchange or transition-metal-catalyzed couplings can be
foreseen for compounds 6.
(10) Nishimura, T.; Yasuhara, Y.; Hayashi, T. Angew. Chem., Int. Ed.
2006, 45, 5164.
(11) For the binding of aliphatic amines to Rh(I), see: (a) Lautens, M.;
Fagnou, K. J. Am. Chem.Soc. 2001, 123, 7170. (b) Lautens, M.; Fagnou,
K.; Yang, D. J. Am. Chem. Soc. 2003, 125, 14884. (c) Cho, Y.; Zunic, V.;
Senboku, H.; Olsen, M.; Lautens, M. J. Am. Chem. Soc. 2006, 128, 6837
and references cited therein. The yield in 5a was not improved when the
reaction was carried out in the presence of Bu4NI (1.1 mol).
(12) For a related coordination of the CH2NMe2 group of 1a with Pd(II)
salts leading to cyclometalation to the 2-position of the indole moiety, see:
Tollari, S.; Demartin, F.; Cenini, S.; Palmisano, G.; Raimondi, P. J.
Organomet. Chem. 1997, 527, 93.
(13) For a review on the synthesis and medicinal relevance of diindoly-
lalkanes, see: Chakrabarty, M.; Basak, R.; Harigaya, Y. Heterocycles 2001,
55, 2431.
(14) To the best of our knowledge, there is only one previously reported
synthesis of nonsymmetrical diindolylmethanes. See: Chalaye-Mauger, H.;
Denis, J.-N.; Averbuch-Pouchot, M.-T.; Valle´e, Y. Tetrahedron 2000, 56,
791.
(16) For other recent syntheses of 3-benzylindoles and 3-allylindoles,
see: (a) Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001. (b)
Tokuyama, H.; Watanabe, M.; Hayashi, Y.; Kurokawa, T.; Peng, G.;
Fukuyama, T. Synlett 2001, 1403. (c) Zhu, X.; Ganesan, A. J. Org. Chem.
2002, 67, 2705. (d) Sefkow, M.; Buchs, J. Org. Lett. 2003, 5, 193. (e)
Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W. Org. Lett. 2003,
5, 2497. (f) Mahadevan, A.; Sard, H.; Gonzalez, M.; McKewb, J. C.
Tetrahedron Lett. 2003, 44, 4589. (g) Campbell, J. A.; Bordunov, V.; Broka,
C. A.; Dankwardt, J.; Hendricks, R. T.; Kress, J. M.; Walker, K. A. M.;
Wang, J.-H. Tetrahedron Lett. 2004, 45, 3793. (h) Bandini, M.; Melloni,
A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199. (i) Kimura, M.; Futamata,
M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (j) Jia, Y.;
Zhu, J. J. Org. Chem. 2006, 71, 7826. (k) Westermaier, M.; Mayr, H. Org.
Lett. 2006, 8, 4791. (l) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem.,
Int. Ed. 2006, 45, 793. (m) Kofink, C. C.; Knochel, P. Org. Lett. 2006, 8,
4121.
Org. Lett., Vol. 9, No. 6, 2007
963