Synthesis of TPP-m-TPE: The synthetic procedure was similar to that
of TPP-p-TPE except bromine-substituted derivative was replaced by 3. A
white powder of 510 mg (0.8 mmol) was obtained in a yield of 74.1%.
1H NMR (400 MHz, CDCl3), δ (ppm): 7.60−7.56 (m, 4H), 7.49−7.47 (m,
2H), 7.36−7.29 (m, 11H), 7.18−7.12 (m, 3H), 7.09−6.96 (m, 14H). 13C
NMR (100 MHz, CDCl3), δ (ppm): 148.6, 148.4, 148.2, 144.0, 143.6,
143.5, 143.2, 141.2, 140.6, 138.6, 138.5, 138.3, 132.6, 131.5, 131.3,
131.2, 130.0, 129.9, 128.6, 128.5, 128.2, 128.1, 127.7, 127.6, 126.5,
126.4. HRMS (MALDI-TOF): m/z 638.2710 ([M]+), calcd for C48H34N2
638.2722).
Keywords
aggregation-induced emission, isomerism effect, nanofluorescent
probes, organic light-emitting diodes, porous crystals
Received: May 14, 2019
Revised: June 19, 2019
Published online:
Synthesis of TPP-o-TPE: The synthetic procedure was similar to that of
TPP-p-TPE except bromine and boron ester-substituted derivatives were
replaced by bromotriphenylethylene and 7. A white powder of 80 mg
(0.13 mmol) was obtained in a yield of 19.3%. 1H NMR (400 MHz,
CD2Cl2), δ (ppm): 7.56−7.54 (m, 4H), 7.36−6.93 (m, 23H), 6.84−6.83
(m, 3H), 6.78−6.76 (d, 2H), 6.70 (d, 2H). 13C NMR (100 MHz, CD2Cl2),
δ (ppm): 145.8, 145.7, 145.6, 140.7, 140.2, 135.8, 132.6, 131.0, 130.7,
130.1, 129.8, 128.5, 128.3, 128.0, 127.8, 127.4, 127.0, 126.4, 126.2, 126.0,
125.8. HRMS (MALDI-TOF): m/z 638.2758 ([M]+), calcd for C48H34N2
638.2722).
Fabrication of OLEDs: Multilayer OLEDs were fabricated by the
vacuum-deposition method. Organic layers were deposited by high-
vacuum (5 × 10−4 Pa) thermal evaporation onto a glass substrate pre-
coated with a 90 nm indium tin oxide (ITO) layer, which was thoroughly
cleaned and treated by O2 plasma before conducting experiments. All
organic layers were deposited sequentially. N,N′-di(1-naphthyl)-N,N′-
diphenyl-benzidine (NPB) was used as the hole-transporting layer
(HTL). TPBi was used as the electron-transporting layer (ETL) and
LiF/Al was used as the cathode. The thermal deposition rates for the
organic materials, LiF, and Al were 1.0, 0.1, and 3 Å s−1, respectively.
The active area of each device was 9 mm2. The electroluminescence
spectra, current density–voltage–luminance (J–V–L) characteristics,
and the electroluminescence spectra of the OLEDs were carried out
with a Photo Research SpectraScan PR-745 Spectroradiometer and a
Keithley 2450 Source Meter and they were recorded simultaneously.
All measurements were done at room temperature under ambient
conditions.
[1] a) C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112,
2208; b) O. Ostroverkhova, Chem. Rev. 2016, 116, 13279; c) D. Li,
W. Y. Lai, Y. Z. Zhang, W. Huang, Adv. Mater. 2018, 30, 1704738;
d) Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 2013,
42, 8012; e) M. Sessolo, H. J. Bolink, Adv. Mater. 2011, 23, 1829;
f) H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
[2] a) P. Zhang, W. Dou, Z. Ju, X. Tang, W Liu, C. Chen, B. Wang,
W. Liu, Adv. Mater. 2013, 25, 6112; b) Q. Qi, J. Qian, X. Tian,
J. Zhang, L. Wang, B. Xu, B. Zou, W. Tian, Adv. Funct. Mater. 2015,
25, 4174; c) H. J. Kim, D. R. Whang, J. Gierschner, S. Y. Park, Angew.
Chem., Int. Ed. 2016, 55, 15915.
[3] a) J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc.
2013, 135, 6724; b) J. Wang, M. Chu, J. X. Fan, T. K. Lau, A. M. Ren,
X. Liu, Q. Miao, J. Am. Chem. Soc. 2019, 141, 3589; c) S. Casalini,
C. A. Bortolotti, F. Leonardi, F. Biscarini, Chem. Soc. Rev. 2017,
46, 40.
[4] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London 1970.
[5] a) J. M. Kang, H. J. Cho, J. Lee, J. I. Lee, S. K. Lee, N. S. Cho,
D. H. Hwang, H. K. Shim, Macromoelcules 2006, 39, 4999;
b) S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. Wu, D. Moses,
A. J. Heeger, Adv. Funct. Mater. 2003, 13, 25; c) Y. Zou, J. Zou, T. Ye,
H. Li, C. Yang, H. Wu, D. Ma, J. Qin, Y. Cao, Adv. Funct. Mater. 2012,
23, 1781.
[6] a) G. Niu, R. Zhang, J. P. C. Kwong, J. W. Y. Lam, C. Chen, J. Wang,
Y. Chen, X. Feng, R. T. K. Kwok, H. H.-Y. Sung, I. D. Williams,
M. R. J. Elsegood, J. Qu, C. Ma, K. S. Wong, X. Yu, B. Z. Tang, Chem.
Mater. 2018, 30, 4778; b) P. Wei, J. X. Zhang, Z. Zhao, Y. Chen,
X. He, M. Chen, J. Gong, H. H.-Y Sung, I. D. Williams, J. W. Y. Lam,
B. Z. Tang, J. Am. Chem. Soc. 2018, 140, 1966; c) Y. C. Duan,
Y. Gao, Y. Geng, Y. Wu, G. G. Shan, L. Zhao, M. Zhang, Z. M. Su,
J. Mater. Chem. C 2019, 7, 2699; d) W. Fu, C. Yan, Z. Guo, J. Zhang,
H. Zhang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2019, 141, 3171;
e) S. Chen, P. Zeng, W. Wang, X. Wang, Y. Wu, P. Lin, Z. Peng,
J. Mater. Chem. C 2019, 7, 2886; f) Z. Chi, X. Zhang, B. Xu, X. Zhou,
C. Ma, Y. Zhang, S. Liu, J. Xiu, Chem. Soc. Rev. 2012, 41, 3878.
[7] a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang,
Chem. Rev. 2015, 115, 11718; b) D. Ding, K. Li, B. Liu, B. Z. Tang,
Acc. Chem. Res. 2013, 46, 2441.
Detection of PA and Ru3+: The detections were carried out by adding
the aqueous solution of PA and Ru3+ with different concentrations
into the THF solution of AIEgens in volume ratio of 9:1. [CCDC
1915439 (TPP-p-TPE), 1915441 (TPP-o-TPE·DCM), and 1915442 (TPP-
o-TPE·THF) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[8] J. Wang, J. Mei, E. Zhao, Z. Song, A. Qin, J. Z. Sun, B. Z. Tang,
Macromolecules 2012, 45, 7692.
[9] J. Mei, J Wang, A. Qin, H. Zhao, W. Yuan, Z. Zhao, H. H. Y. Sung,
C. Deng, S. Zhang, I. D. Williams, J. Z. Sun, B. Z. Tang, J. Mater.
Chem. 2012, 22, 4290.
[10] a) Z. Zhao, C. Chen, W. Wu, F. Wang, L. Du, X. Zhang, Y. Xiong,
X. He, Y. Cai, R. T. K. Kwok, J. W. Y. Lam, X. Gao, P. Sun,
D. L. Phillips, D. Ding, B. Z. Tang, Nat. Commun. 2019, 10, 768;
b) P. Alam, N. L. C. Leung, Y. Cheng, H. Zhang, J. Liu, W. Wu,
R. T. K. Kwok, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, B. Z. Tang,
Angew. Chem., Int. Ed. 2019, 58, 4536.
[11] a) M. Chen, L. Li, H. Nie, J. Tong, L. Yan, B. Xu, J. Z. Sun, W. Tian,
Z. Zhao, A. Qin, B. Z. Tang, Chem. Sci. 2016, 6, 1932; b) M. Chen,
R. Chen, Y. Shi, J. Wang, Y. Cheng, Y. Li, X. Gao, Y. Yan, J. Z. Sun,
A. Qin, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Adv. Funct. Mater.
2018, 28, 1704689; c) M. Chen, L. Li, H. Wu, L. Pan, S. Li, B. He,
H. Zhang, J. Z. Sun, A. Qin, B. Z. Tang, ACS Appl. Mater. Interfaces
Acknowledgements
This work was partially supported by the National Natural Science
Foundation of China (21788102), the University Grants Committee of
Hong Kong (AoE/P-03/08), the Research Grants Council of Hong Kong
(16305015, A-HKUST 605/16 and C6009-17G), the Innovation and
Technology Commission (ITC-CNERC14SC01 and ITCPD/17-9), and the
Science and Technology Plan of Shenzhen (JCYJ20170818113602462 and
JCYJ20160229205601482).
Conflict of Interest
The authors declare no conflict of interest.
©
Adv. Funct. Mater. 2019, 1903834
1903834 (11 of 12)
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim