4
Journal of Chemistry
1H NMR [(CD ) CO, 200 MHz]: ꢀ 8.27 (ddd, ꢁ ꢂ 7.=, 1.5,
Acknowledgments
3 2
0.6 Hz, 1H), 8.16 (ddd, ꢁ ꢂ =.1, 1.3, 0.6 Hz, 1H), 8.04 (ddd,
ꢁ ꢂ =.1, 7.1, 1.5 Hz, 1H), 7.87 (ddd, ꢁ ꢂ 7.=, 7.1, 1.3 Hz, 1H), 7.43
(m, 5H), 6.39 (dd, ꢁ ꢂ 9.7, 5.2 Hz, 1H), 4.70 (dd, ꢁ ꢂ 11.4,
9.7 Hz, 1H), 4.25 (dd, ꢁ ꢂ 11.4, 5.2 Hz, 1H). 13C NMR
e authors gratefully acknowledge support from Con-
sejo Nacional de Ciencia y Tecnolog´ıa (CONACyT Grant
36435-E and “Supramolecular Chemistry ematic Network”
Grant 271884), Programa de Mejoramiento del Profeso-
rado (Apoyo a la Incorporacio´n de Nuevos PTC Grant
Promep/103.5/11/4462), and Consejo del Sistema Nacional
de Educacio´n Tecnolo´gica (COSNET, Grant 486-02-P). e
authors are indebted to Ignacio Rivero Espejel and Ratnasamy
Somanathan for their support in this work.
[(CD ) CO, 50 MHz]: ꢀ 156.1, 144.6, 138.6, 136.0, 133.3, 129.4,
3 2
128.9, 128.9, 128.7, 125.7, 120.5, 64.0, 63.3. ESI-HRMS: 268.1094
(100), calculated for [M+H]+, C H N O , 268.1081.
15 14
3
2
3-((R)-1-Hydroxybutan-2-yl)-1,2,3-benzotriazin-4(3H)-one (4c).
ꢀ
White solid (>99% yield), mp 89-90∘C. [ꢃꢄ20 ꢂ −5 (c 0.22,
MeOH). FTIR (KBr): ] 3439, 1686, 1663, 1296 cm−1. 1H NMR
[(CD ) CO, 200 MHz]: ꢀ 8.29 (ddd, ꢁ ꢂ 7.9, 1.5, 0.6 Hz, 1H),
References
3 2
8.16 (ddd, ꢁ ꢂ =.1, 1.5, 0.6 Hz, 1H), 8.07 (ddd, ꢁ ꢂ =.2, 7.0,
1.5 Hz, 1H), 7.91 (ddd,, ꢁ ꢂ 7.9, 7.0, 1.5 Hz, 1H), 5.22 (m, 1H),
4.10 (dd, ꢁ ꢂ 11.3, 8.4 Hz, 1H), 3.96 (dd, ꢁ ꢂ 11.3, 5.1 Hz,
1H), 1.99 (quin, ꢁ ꢂ 7.4 Hz, 2H), 0.90 (t, ꢁ ꢂ 7.4 Hz, 3H). 13C
[1] G. Caliendo, F. Fiorino, P. Grieco et al., “Preparation and local
anaesthetic activity of benzotriazinone and benzoyltriazole
derivatives,” European Journal of Medicinal Chemistry, vol. 34,
no. 12, pp. 1043–1051, 1999.
[2] G. Z. Zheng, P. Bhatia, J. Daanen et al., “Structure-activity rela-
tionship of triazafluorenone derivatives as potent and selective
mGluR1 antagonists,” Journal of Medicinal Chemistry, vol. 48,
no. 23, pp. 7374–7388, 2005.
NMR [(CD ) CO, 50 MHz]: ꢀ 156.6, 144.5, 135.8, 133.2, 128.8,
3 2
125.7, 120.3, 64.2, 62.3, 24.2, 10.8. ESI-HRMS: 220.1091 (100),
calculated for [M+H]+, C H N O , 220.1081.
11 14
3
2
[3] A. Vaisburg, N. Bernstein, S. Frechette et al., “(2-Amino-
phenyl)-amides of ꢅ-substituted alkanoic acids as new histone
deacetylase inhibitors,” Bioorganic & Medicinal Chemistry Let-
ters, vol. 14, no. 1, pp. 283–287, 2004.
3.4. Procedure for the Synthesis of Acetylated Derivative 3-
(2-Hydroxyethyl)-1,2,3-benzotriazin-4(3H)-onyl Acetate (7a).
To a solution of 1,2,3-benzotriazinone (4a) (200 mg, 1.0 mmol
in 3.0 mL pyridine), excess of acetic anhydride (3.0 mL,
32 mmol) was added. e reaction mixture was stirred at
room temperature for 24 h. To purify the acetylated derivative
7a, sodium hydroxide (2.6 g, 64 mmol in 30 mL of water) was
added to the reaction mixture and then extracted with ethyl
acetate (3 × 10 mL). e organic phase was washed with 2 M
HCl (3 × 40 mL), dried over anhydrous sodium sulfate, and
filtered. e solvent was evaporated under reduced pressure
and the white solid dried in vacuum for 24 h.
[4] A.-M. Chollet, T. Le Diguarher, N. Kucharczyk et al., “Solid-
phase synthesis of ꢃ-substituted 3-bisarylthio N-hydroxy propi-
onamides as specific MMP inhibitors,” Bioorganic & Medicinal
Chemistry, vol. 10, no. 3, pp. 531–544, 2002.
[5] T. Le Diguarher, A.-M. Chollet, M. Bertrand et al., “Stereospe-
cific synthesis of 5-substituted 2-bisarylthiocyclopentane car-
boxylic acids as specific matrix metalloproteinase inhibitors,”
Journal of Medicinal Chemistry, vol. 46, no. 18, pp. 3840–3852,
2003.
A white solid was obtained (240 mg, 1.0 mmol, quanti-
[6] A. S. Clark, B. Deans, M. F. G. Stevens et al., “Antitumor imi-
dazotetrazines. 32. Synthesis of novel imidazotetrazinones and
related bicyclic heterocycles to probe the mode of action of the
antitumor drug temozolomide,” Journal of Medicinal Chemistry,
vol. 38, no. 9, pp. 1493–1504, 1995.
[7] L. A. Carpino, J. Xia, C. Zhang, and A. El-Faham, “Organophos-
phorus and nitro-substituted sulfonate esters of 1-hydroxy-7-
azabenzotriazole as highly efficient fast-acting peptide coupling
reagents,” Journal of Organic Chemistry, vol. 69, no. 1, pp. 62–71,
2004.
[8] V. Janout, B. Jing, I. V. Staina, and S. L. Regen, “Selective
transport of ATP across a phospholipid bilayer by a molecular
umbrella,” Journal of the American Chemical Society, vol. 125, no.
15, pp. 4436–4437, 2003.
[9] T. M. Gierasch, M. Chytil, M. T. Didiuk et al., “A modular
synthetic approach toward exhaustively stereodiversified ligand
libraries,” Organic Letters, vol. 2, no. 25, pp. 3999–4001, 2000.
tative yield). FTIR (KBr): ] 3072, 1741, 1685, 1230 cm−1. H
1
NMR [(CD ) CO, 200 MHz]: ꢀ 8.30 (ddd, ꢁ ꢂ 7.=, 1.5,
3 2
0.6 Hz), 8.17 (ddd, ꢁ ꢂ =.1, 1.6, 0.6 Hz), 8.09 (ddd, ꢁ ꢂ =.1, 7.0,
1.5 Hz), 7.93 (ddd, ꢁ ꢂ 7.=, 6.9, 1.6 Hz), 4.70 (t, ꢁ ꢂ 5.6 Hz, 2H),
4.55 (t, ꢁ ꢂ 5.6 Hz, 2H), 1.95 (s, 3H). 13C NMR [(CD ) CO,
3 2
50 MHz]: ꢀ 171.9, 157.0, 146.0, 136.9, 134.4, 130.0, 126.5, 121.6,
63.0, 50.4, 21.5.
X-Ray Data Collection and Refinement. e details of the
structure determination are given in Table S1, atomic
˚
coordinates are given in Table S2, and bond lengths (A)
and angles (∘) are given in Table S3 in Supporting Infor-
mation. Crystallographic data for the structural analyses
have been deposited with the Cambridge Crystallographic
Data Centre CCDC 903418. Further details of the crys-
tal structure investigation are available free of charge via
[10] T. Okuzumi, E. Nakanishi, T. Tsuji, and S. Makino, “Efficient
solid-phase synthesis of diverse 1,2,3-benzotriazin-4-ones using
tert-butyl nitrite,” Tetrahedron Letters, vol. 44, no. 29, pp. 5539–
5542, 2003.
[11] A. Deeb, M. Kotb, and M. El-Abbasy, “Pyridazine derivatives
and related compounds, part 12: synthesis of some pyridazino
[4ꢁ,3ꢁ:4,5]thieno[3,2-d]-1,2,3-triazines,” Phosphorus, Sulfur, and
Silicon and the Related Elements, vol. 180, no. 2, pp. 591–599,
2005.
Competing Interests
e authors declare that there are no competing interests
regarding the publication of this paper.