Paper
RSC Advances
room temperature, EtOAc (5 mL) was added to the reaction
mixture. The catalyst was separated by an external magnet,
washed with EtOAc (2 ꢂ 10 mL) and EtOH (2 ꢂ 10 mL), dried in
vacuum and reused. The solvent of the combined organic layer
was evaporated under vacuum. Pure products were obtained by
recrystallization in EtOH or by column chromatography eluted
with n-hexane : EtOAc (5 : 1 or 2 : 1). 1H NMR spectra of the
products (a, c, d, e, g, k and p) have been presented in the ESI.†
(d) H. Luo, K. Chen, H. Jiang and S. Zhu, Org. Lett., 2016,
20, 5208.
3 (a) W. Qin, S. Long, M. Panunzio and S. Biondi, Molecules,
2013, 18, 12264; (b) R. D. Patil and S. Adimurthy, Asian J.
Org. Chem., 2013, 2, 726.
4 G. J. Chen, H. C. Ma, W. L. Xin, X. B. Li, F. Z. Jin, J. S. Wang,
M. Y. Liu and Y. B. Dong, Inorg. Chem., 2017, 56, 654.
5 G. M. Zhao, H. L. Liu, X. R. Huang, D. D. Zhang and X. Yang,
RSC Adv., 2015, 5, 22996.
6 S. Mandal, S. Maity, S. Saha and B. Banerjee, RSC Adv., 2016,
6, 73906.
Conclusion
7 K. Wang, W. Gao, P. Jiang, K. Lan, M. Yang, X. Huang, L. Ma,
F. Niu and R. Li, Mol. Catal., 2019, 456, 43.
8 H. Liu, G. K. Chuah and S. Jaenicke, Phys. Chem. Chem. Phys.,
2015, 17, 15012.
9 D. Tan, H. Li, D. J. Young and J. Long, Tetrahedron, 2016, 72,
4169.
10 (a) J. Chen, S. Huang, J. Lin and W. Su, Appl. Catal., A, 2014,
470, 1–7; (b) L. Tang, H. Sun, Y. Li, Z. Zha and Z. Wang, Green
Chem., 2012, 14, 3423.
11 U. Mandi, A. S. Roy, S. K. Kundu, S. Roy, A. Bhaumik and
S. M. Islam, J. Colloid Interface Sci., 2016, 472, 202.
12 A. Zanardi, J. A. Mata and E. Peris, Chem.–Eur. J., 2010, 16,
10502.
13 X. Cui, C. Zhang, F. Shi and Y. Deng, Chem. Commun., 2012,
48, 9391.
14 T. Song, Y. Duan, X. Chen and Y. Yang, Catalysts, 2019, 9,
116.
15 J. M. Perez, R. Cano, M. Yus and D. J. Ramon, Eur. J. Org.
Chem., 2012, 24, 4548.
In summary, in this paper, an efficient method for the synthesis
of imines by tandem reaction of various alcohols (primary
aromatic and aliphatic) and nitro compounds (aromatic and
aliphatic) was developed via auto-hydrogen transfer reaction,
catalyzed by Cu-isatin Schiff base-g-Fe2O3 as a nanomagneti-
cally reusable and inexpensive catalyst under solvent-free
conditions. Good to high yields of imines were achieved
under mild reaction conditions without requiring any additive.
Aer EtOAc was added to the reaction mixture, the catalyst was
easily isolated by using an external magnet and reused
successfully for six runs without any signicant changes on the
chemical structure of the catalyst. This catalytic system had the
merits of cost effectiveness, environmental benignity, excellent
recyclability and good reproducibility for the direct synthesis of
imines from alcohols and nitro compounds without requiring
high temperature, long reaction times, expensive catalysts,
additives, large amounts of the catalyst, bimetallic catalysts,
especial atmospheric conditions, hydrogen gas, toxic organic
solvents and most importantly use of excess amounts of benzyl
alcohol as the reaction solvent.
16 (a) S. Sobhani, A. Habibollahi and Z. Zeraatkar, Org. Process
Res. Dev., 2019, 23, 1321; (b) H. H. Moghadam, S. Sobhani
and J. M. Sansano, ACS Omega, 2020, 5, 18619; (c)
A. Khazaee, R. Jahanshahi, S. Sobhani, J. Skibsted and
J. M. Sansano, Green Chem., 2020, 22, 4604; (d) The
method for the preparation of the catalyst is explained in
the ESI.†
Conflicts of interest
There are no conicts to declare.
17 S. Sobhani, S. Asadi, M. Salimi and F. Zari, J. Organomet.
Chem., 2016, 822, 154.
18 M. Niakan, Z. Asadi and M. M. Farahani, Appl. Surf. Sci.,
2019, 481, 394.
19 B. Huang, J. Chen, S. Zhan and J. Ye, J. Electrochem. Soc.,
2016, 163, G26.
Acknowledgements
Financial support of this project by University of Birjand
Research Council is acknowledged. Access to the XPS facilities
of University of Alicante is appreciated.
20 X. Zhang, X. Hu, P. Guan, N. Zhang, J. Li and C. Du, J. Mater.
Sci., 2017, 52, 4713.
References
1 (a) A. Jarrahpour, P. Shirvani, V. Sinou, Ch. Latour and 21 Y. Liu, L. Ma, D. Zhang, G. Han and Y. Chang, RSC Adv.,
J. M. Brunel, Med. Chem. Res., 2016, 25, 149; (b) 2017, 7, 12027.
M. S. Kiakhani and S. Safapour, Clean Technol. Environ. 22 L. Ravishankar, S. A. Patwe, N. Gosarani and A. Roy, Synth.
Policy, 2015, 17, 1019; (c) W. A. Zoubi, S. G. Mohamed, Commun., 2010, 40, 3177.
A. A. S. Al-Hamdani, A. P. Mahendradhany and Y. G. Ko, 23 X. Cui, Y. Zhang, F. Shi and Y. Deng, Chem.–Eur. J., 2011, 17,
RSC Adv., 2018, 8, 23294; (d) M. Jafari, M. Hasanzadeh,
R. Karimian and N. Shadjou, Microchem. J., 2019, 147, 741.
2 (a) Y. Feng, J. Yin, Sh. Liu, Y. Wang, B. Li and T. Jiao, ACS
2587.
¨
24 M. Bohmer, F. Kampert, T. T. Y. Tan, G. G. Barrios, E. Peris
and F. E. Hahn, Organometallics, 2018, 37, 4092.
Omega, 2020, 7, 3725; (b) Y. Yamashita, H. Suzuki, I. Sato, 25 D. Liu, P. Yang, H. Zhang, M. Liu, W. Zhang, D. Xu and
T. Hirata and S. Kobayashi, Angew. Chem., Int. Ed., 2018, J. Gao, Green Chem., 2019, 21, 2129.
57, 6896; (c) M. Bai, B. Cui, J. Zuo, J. Zhao, Y. You, Y. Chen, 26 S. Sabater, J. A. Mata and E. Peris, Chem.–Eur. J., 2012, 18,
X. Xu, X. Zhang and W. Yuan, Tetrahedron, 2015, 71, 949;
6380.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 19121–19127 | 19127