Communication
ChemComm
´
7 Y. Li, J. Rodrigues and H. Tomas, Chem. Soc. Rev., 2012, 41, 2193–2221.
8 N. Matsuda, T. Shimizu, M. Yamato and T. Okano, Adv. Mater., 2007,
19, 3089–3099.
healing efficiency of the ion gel only by UV irradiation without
heating was very poor, 11%.
In summary, we demonstrated for the first time the photo-
healing of ion gels through the photodimerisation of anthracene as
dynamic covalent bonds. More specifically, anthracene-terminated
tetra-arm PEG (tetraPEG–Ant) was synthesised by modification of the
9 X. Zhang, C. L. Pint, M. H. Lee, B. E. Schubert, A. Jamshidi, K. Takei,
H. Ko, A. Gillies, R. Bardhan, J. J. Urban, M. Wu, R. Fearing and
A. Javey, Nano Lett., 2011, 11, 3239–3244.
10 Y. Yang and M. W. Urban, Chem. Soc. Rev., 2013, 42, 7446–7467.
11 Y. Yang, X. Ding and M. W. Urban, Prog. Polym. Sci., 2015, 49, 34–59.
terminal hydroxy groups of tetraPEG using anthracene isocyanate. 12 J.-M. Schumers, C.-A. Fustin and J.-F. Gohy, Macromol. Rapid Commun.,
2010, 31, 1588–1607.
13 Y. Zhao, Macromolecules, 2012, 45, 3647–3657.
14 G. Kaur, P. Johnston and K. Saito, Polym. Chem., 2014, 5, 2171–2186.
The desired ion gels were successfully prepared by UV light
irradiation of the tetraPEG–Ant solutions in ILs due to the
formation of anthracene photodimers as chemical cross-linking 15 S. Kadota, K. Aoki, S. Nagano and T. Seki, J. Am. Chem. Soc., 2005,
points. In addition, repeated increases and decreases in the G0
127, 8266–8267.
16 Y.-L. Zhao and J. F. Stoddart, Langmuir, 2009, 25, 8442–8446.
17 T. Seki, Bull. Chem. Soc. Jpn., 2018, 91, 1026–1057.
and G00 values of the ion gel were observed upon heating and UV
irradiation cycling, thereby indicating that the anthracene photo-
dimer can be quasi-reversibly cleaved and reformed. Indeed, a
cut ion gel sheet was successfully healed with a good healing
efficiency through sequential heating and UV irradiation. The
reversibility of the dimerisation/dissociation cycles of anthracene
was, however, not sufficient, and so further improvements are
desirable to improve the healing efficiencies of ion gels based on
photodimerisation chemistry. We expect that these results will be
of importance in terms of the application of such nonvolatile soft
materials in flexible sensors, actuators, and coatings.
This work was financially supported by Grants-in-Aid for
Scientific Research (15H05758 to M. W. and 18K14280 to R. T.)
and Specially Promoted Research on Iontronics (No. 25000003)
funded by MEXT, Japan. R. T. acknowledges Research Fellow-
ships awarded by the Japan Society for the Promotion of
Science for Young Scientists (17J00756). We also thank
Mr Yoshifum Kondo (the University of Tokyo) for his contribu-
tion to establish the synthetic route toward tetraPEG–Ant.
18 T. Ueki, Y. Nakamura, R. Usui, Y. Kitazawa, S. So, T. P. Lodge and
M. Watanabe, Angew. Chem., Int. Ed., 2015, 54, 3018–3022.
19 T. Ueki, R. Usui, Y. Kitazawa, T. P. Lodge and M. Watanabe,
Macromolecules, 2015, 48, 5928–5933.
20 X. Ma, R. Usui, Y. Kitazawa, R. Tamate, H. Kokubo and M. Watanabe,
Macromolecules, 2017, 50, 6788–6795.
21 C. Wang, K. Hashimoto, R. Tamate, H. Kokubo and M. Watanabe,
Angew. Chem., Int. Ed., 2018, 57, 227–230.
22 Y. Gu, S. Zhang, L. Martinetti, K. H. Lee, L. D. McIntosh, C. D.
Frisbie and T. P. Lodge, J. Am. Chem. Soc., 2013, 135, 9652–9655.
23 C. J. Kloxin, T. F. Scott, B. J. Adzima and C. N. Bowman, Macro-
molecules, 2010, 43, 2643–2653.
24 D. Habault, H. Zhang and Y. Zhao, Chem. Soc. Rev., 2013, 42,
7244–7256.
25 C.-M. Chung, Y.-S. Roh, S.-Y. Cho and J.-G. Kim, Chem. Mater., 2004,
16, 3982–3984.
26 J. Ling, M. Z. Rong and M. Q. Zhang, J. Mater. Chem., 2011, 21,
18373–18380.
27 P. Froimowicz, H. Frey and K. Landfester, Macromol. Rapid Commun.,
2011, 32, 468–473.
28 F. Biedermann, E. A. Appel, J. del Barrio, T. Gruendling, C. Barner-
Kowollik and O. A. Scherman, Macromolecules, 2011, 44, 4828–4835.
29 Y. Zheng, M. Micic, S. V. Mello, M. Mabrouki, F. M. Andreopoulos,
V. Konka, S. M. Pham and R. M. Leblanc, Macromolecules, 2002, 35,
5228–5234.
30 R. Tamate, T. Ueki, A. M. Akimoto, R. Yoshida, T. Oyama, H. Kokubo
and M. Watanabe, RSC Adv., 2018, 8, 3418–3422.
31 H. Bouas-Laurent, J.-P. Desvergne, A. Castellan and R. Lapouyade,
Chem. Soc. Rev., 2000, 29, 43–55.
Conflicts of interest
There are no conflicts to declare.
32 T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki,
N. Sasaki, M. Shibayama and U. Chung, Macromolecules, 2008, 41,
5379–5384.
Notes and references
33 K. Fujii, H. Asai, T. Ueki, T. Sakai, S. Imaizumi, U. Chung, M. Watanabe
and M. Shibayama, Soft Matter, 2012, 8, 1756–1759.
34 Y.-K. Song, K.-H. Lee, W.-S. Hong, S.-Y. Cho, H.-C. Yu and C.-M.
Chung, J. Mater. Chem., 2012, 22, 1380–1386.
1 P. Fratzl and F. G. Barth, Nature, 2009, 462, 442–448.
2 S. Ahn, R. M. Kasi, S.-C. Kim, N. Sharma and Y. Zhou, Soft Matter,
2008, 4, 1151–1157.
3 B. Jeong and A. Gutowska, Trends Biotechnol., 2002, 20, 305–311.
4 A. M. Kushner and Z. Guan, Angew. Chem., Int. Ed., 2011, 50, 9026–9057.
5 M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Mu¨ller, C. Ober, M. Stamm,
G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik,
S. Zauscher, I. Luzinov and S. Minko, Nat. Mater., 2010, 9, 101–113.
6 K. Kataoka, A. Harada and Y. Nagasaki, Adv. Drug Delivery Rev., 2001,
47, 113–131.
35 S. Radl, M. Kreimer, T. Griesser, A. Oesterreicher, A. Moser, W. Kern
¨
and S. Schlogl, Polymer, 2015, 80, 76–87.
36 J.-F. Xu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Org. Lett.,
2013, 15, 6148–6151.
37 T. Yamamoto, S. Yagyu and Y. Tezuka, J. Am. Chem. Soc., 2016, 138,
3904–3911.
13374 | Chem. Commun., 2018, 54, 13371--13374
This journal is ©The Royal Society of Chemistry 2018