Organic Letters
Letter
(15) (a) Byers, P. K.; Canty, A. J.; Jin, H.; Kruis, D.; Markies, B. A.;
Boersma, J.; van Koten, G.; Hill, G. S.; Irwin, M. J.; Rendina, L. M.;
Puddephatt, R. J. Inorg. Synth. 1998, 32, 162. (b) Kaschube, W.;
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, spectroscopic data, and X-ray
crystallographic data. This material is available free of charge
■
S
Porschke, K. R.; Wilke, G. J. Organomet. Chem. 1988, 355, 525.
̈
(16) Marshall, W. J.; Grushin, V. V. Can. J. Chem. 2005, 83, 640.
(17) Moss, J. R.; Shaw, B. L. J. Chem. Soc. A 1966, 1793.
(18) Uchino, M.; Asagi, K.; Yamamoto, A.; Ikeda, S. J. Organomet.
Chem. 1975, 84, 93.
AUTHOR INFORMATION
Corresponding Author
■
(19) The structure shown represents the majority conformation
(∼80%). See SI for a whole molecule disorder model.
(20) Graham, T. J. A.; Doyle, A. G. Org. Lett. 2012, 14, 1616.
(21) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed.
2008, 47, 4866.
(22) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.
(23) Ohashi, M.; Takeda, I.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc.
2014, 133, 18018.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
■
(24) Kumar, P.; Thakur, A.; Hong, X.; Houk, K. N.; Louie, J. J. Am.
Chem. Soc. 2014, 136, 17844.
(25) Whitaker, A. M.; Dong, V. M. Angew. Chem., Int. Ed. 2015, 54,
Financial support from NIGMS (R01 GM100985-02) and
Princeton University is acknowledged. This material is based
upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1148900
(to E.E.G.). We thank Phil Jeffrey of Princeton University for
X-ray crystallographic structure determination and Grant
Margulieux of Princeton University for helpful discussions.
Precatalyst 1 will be commercially available from Sigma-Aldrich.
1312.
(26) The positive effect of K3PO4 additive in most of the test reactions
suggests the possible intermediacy of a Ni-hydroxo complex as described
by Monfette and coworkers at Pfizer: Christian, A. H.; Muller, P.;
Monfette, S. Organometallics 2014, 33, 2134. We have been unable to
isolate any such intermediates, though work in this area is ongoing.
(27) See the Supporting Information for details.
(28) Shields, J. D.; Ahneman, D. T.; Graham, T. J. A.; Doyle, A. G. Org.
Lett. 2014, 16, 142.
REFERENCES
■
(1) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(2) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(3) SciFinder searches for the phrases “palladium-catalyzed cross-
coupling” and “Pd-catalyzed cross-coupling” yielded 4315 hits, while the
equivalent searches for “nickel” and “Ni” yielded only 487. A similar
order of magnitude difference is observed when “cross-coupling” is
omitted. (accessed 13 March 2015).
(4) (a) Handley, D. A.; Hitchcock, P. B.; Leigh, G. J. Inorg. Chim. Acta
2001, 314, 1. (b) Jensen, K. L.; Standley, E. A.; Jamison, T. F. J. Am.
Chem. Soc. 2014, 136, 11145.
(5) Additionally, NiX2 and their glyme adducts are hygroscopic,
limiting their air-stability. NiCl2·glyme has also been shown to dissociate
glyme spontaneously even in an anhydrous environment: Prinsell, M.
R.; Everson, D. A.; Weix, D. J. Chem. Commun. 2010, 46, 5743.
(6) (a) Colon, I.; Kelsey, D. R. J. Org. Chem. 1986, 51, 2627.
(b) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890.
(7) Garg has shown that NiCl2·glyme can be reduced to Ni(0) by
sacrificial arylboronate ester, but this strategy is not always successful.
Hie, L.; Ramgren, S. D.; Mesganaw, T.; Garg, N. K. Org. Lett. 2012, 14,
4182.
(8) (a) Chen, C.; Yang, L.-M. Tetrahedron Lett. 2007, 48, 2427.
(b) Chen, C.; Yang, L.-M. J. Org. Chem. 2007, 72, 6324. (c) Fan, X.-H.;
Yang, L.-M. Eur. J. Org. Chem. 2011, 1467.
(9) Ge, S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 12837.
(10) (a) Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135,
1585. (b) Standley, E. A.; Smith, S. J.; Muller, P.; Jamison, T. F.
̈
Organometallics 2014, 33, 2012.
(11) Park, N. H.; Teverovskiy, G.; Buchwald, S. L. Org. Lett. 2014, 16,
220.
(12) Jezorek, R. L.; Zhang, N.; Leowanawat, P.; Bunner, M. H.;
Gutsche, N.; Pesti, A. K. R.; Olsen, J. T.; Percec, V. Org. Lett. 2014, 16,
6326.
(13) [(PPh3)2Ni(1-naphthyl)(Cl)] has been used in conjunction with
an NHC ligand (ref 8b) to obtain reactivity in a Buchwald−Hartwig
reaction. However, the generality of this method has not been tested nor
has it been demonstrated that the excess PPh3 is tolerated in a wide
variety of reactions.
(14) (a) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett.
2001, 3, 3049. (b) Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein,
A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.;
Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
2169
Org. Lett. 2015, 17, 2166−2169