Analytical data for 8. 1H NMR (400 MHz, CDCl3): d =
8.15–8.08 (m, 2 H, ArHortho), 7.69–7.77 (m, 2 H, ArHortho),
7.57–7.48 (m, 3 H, ArH), 7.44–7.31 (m, 3 H, ArH), 6.52
(dd, 1 H, J = 3.4, 2.2 Hz, 6-H), 6.33–6.28 (m, 1 H, 5-H),
1795–1798; (j) Z. Liu and J. D. Rainier, Org. Lett., 2006, 8,
459–462; (k) S. E. Ward, A. B. Holmes and R. McCague, Chem.
Commun., 1997, 2085–2086; (l) S. Alonso De Diego, P. Munoz,
R. Gonza
E. Cenarruzabeitia, D. Frechilla, J. Del Rio, M. L. Jimeno and
T. Garcıa-Lopez, Bioorg. Med. Chem. Lett., 2005, 15, 2279–2283;
lez-Muniz, R. Herranz, M. Martın-Martınez,
´ ´ ´
´
´
4.25 (brs, 1 H, 1-H), 3.39 (s, OCH3), 3.31 (d, 1 H, J = 10.1 Hz,
À
(m) P. W. R. Harris, M. A. Brimble, V. J. Muir, M. Y. H.
Lai, N. S. Trotter and D. J. Callis, Tetrahedron, 2005, 61,
10018–10035.
2 (a) D. L. Boger and S. M. Weinred, in Hetero-Diels–Alder
Methodology in Organic Synthesis, Organic Chemistry, ed.
H. H. Wasserman, Academic Press, New York, 1987;
(b) S. M. Weinreb, in Comprehensive Organic Synthesis, ed.
B. M. Trost, I. Fleming and L. A. Paquette, Pergamon Press,
Oxford, 1991, vol. 5, pp. 401–449; (c) G. B. Rowland,
E. B. Rowland, Q. Zhang and J. C. Antilla, Curr. Org. Chem.,
3-H), 3.22 (brs, 1 H, 4-H), 2.19 (d, 1 H, J = 8.4 Hz, 7syn-H),
1.40–1.34 (m, 1 H, 7anti-H); 13C NMR (100 MHz, CDCl3): d =
173.14 (d, JC–P = 1.7 Hz, CO2CH3), 138.05 (d, JC–P = 1.7 Hz,
À
C-6), 134.66 (C-5), 132.89 (d, JC–P = 9.3 Hz, 2 Â Cortho),
132.25 (d, JC–P = 26.0 Hz, Cipso), 132.05 (d, JC–P = 9.8 Hz,
2 Â Cortho), 131.92 (d, JC–P = 2.7 Hz, Cpara), 131.54 (d, JC–P
=
2.7 Hz, Cpara), 130.96 (d, JC–P = 17.5 Hz, Cipso), 128.55
(d, JC–P = 12.6, 2 Â Cmeta), 127.92 (d, JC–P = 12.6, 2 Â Cmeta),
´
2006, 10(9), 981–1005; (d) M. L. Cardoso do Vale, J. E. Rodrıguez-
Borges, O. Caamano, F. Fernandez and X. Garcıa-Mera,
62.74 (C-1), 58.94 (d, JC–P = 1.9 Hz, C-3), 51.68 (OCH3), 50.18
À
´
´
(d, JC–P = 5.3 Hz, C-4), 45.31 (d, JC–P = 8.7 Hz, C-7 = CH2);
31P NMR (162 MHz, CDCl3): d = 25.95; 15N NMR (40 MHz,
CDCl3): d = 74.51 (d, JP–N = 10.3 Hz); ESI-MS: calculated for
[C20H20NO3P+H]+ (M + H+) 354.12, found 354.63.
Tetrahedron, 2006, 62, 9475–9482 and references therein;
(e) J. E. Rodriguez-Borges, X. G. Mera, F. Fernandez, V. H. C.
Lopes, A. L. Magalhaes and M. N. D. S. Cordeiro, Tetrahedron,
2005, 61, 10951–10957 and references therein; (f) F. Fernandez,
X. G. Mera, M. L. C. Vale and J. E. Rodriguez-Borges, Synlett,
2005, 2, 319–321 and references therein; (g) F. Teixeira,
J. E. Rodriguez-Borges, A. Melo and M. N. D. S. Cordeiro, Chem.
Phys. Lett., 2009, 477, 60–64; (h) M. B. Hursthouse, K. M. A.
Malik, D. E. Hibbs, S. M. Roberts, A. J. H. Seago, V. Sik and
R. Storer, J. Chem. Soc., Perkin Trans. 1, 1995, 2419–2425.
Adducts 3, 4, 7 and 8 from (Æ)-2-hydroxy-2-azabicyclo[2.2.1]-
hept-5-ene-3-carboxylates. A solution of methyl 2-hydroxy-2-
azabicyclo[2.2.1]hept-5-ene-3-carboxylate (1 or 2)12 (2.06 g,
12.2 mmol), Et3N (3.30 mL, 23.8 mmol) and a catalytic
amount of DMAP (20 mg, 0.16 mmol) in dry CH2Cl2
(25 mL) at À15 1C was stirred under an argon atmosphere
for 5 min. Then, PClPh2 (2.10 mL, 12.0 mmol) was added
dropwise and the mixture left to react for 4 h at À15 1C and for
an additional 2 h at room temperature. The solvent was
removed under low pressure, and the residue taken up in
AcOEt and filtered through a funnel with a cotton plug.
After removal of the solvent, the compounds formed were
isolated by column chromatography (SiO2, CH2Cl2–Et2O 1 : 1
and/or AcOEt).
3 (a) M. J. Alves, X. Garcıa-Mera, M. L. C. Vale, T. P. Santos,
´
F. R. Aguiar and J. E. Rodrıguez-Borges, Tetrahedron Lett., 2006,
´
47, 7595–7597 and references therein; (b) J. E. Rodriguez-Borges,
M. L. C. Vale, F. R. Aguiar, M. J. Alves and X. Garcia-Mera,
Synthesis, 2008, 971–977 and references therein; (c) W. Maison,
D. C. Grohs and A. H. G. P. Prenzel, Eur. J. Org. Chem., 2004,
1527–1543.
4 (a) Nucleoside Analogs in Cancer Therapy, ed. B. D. Cheson,
M. J. Keating and W. Plunkett, Marcel Dekker, New York,
1997; (b) E. De Clercq, Clin. Microb. Rev., 1997, 10, 674;
(c) J. T. Slama, N. Mehta and E. Skrzypezak-Jankun, J. Org.
Chem., 2006, 71, 7877–7880; (d) E. De Clerq, Curr. Med. Chem.,
2001, 8, 1543; (e) J. Ena and F. Pasquau, Clin. Infect. Dis., 2003,
36, 1186; (f) M. Louie, C. Hogan, M. Di Mascio, A. Hurley,
V. Simon, J. Rooney, N. Ruiz, S. Brun, E. Sun, A. S. Perelson,
D. D. Ho and M. Markowitz, J. Infect. Dis., 2003, 187, 896;
(g) P. Abeijon, J. M. Blanco, O. Caamano, F. Fernandez,
M. D. Garcia, X. Garcia-Mera, J. E. Rodriguez-Borges,
J. Balzarini and E. De Clercq, Synthesis, 2009, 16, 2766–2772
and references therein.
Acknowledgements
Thanks are due to Fundac¸ ao para a Ciencia e Tecnologia
(FCT) for financial support given to Faculdade de Ciencias
do Porto (project PTDC/QUI/67407/2006) and for financial
support through the re-equipment program REDE/1517/
RMN/2005 and CONC-REEQ/275/QUI. C. A. D. S. gives
thanks for grant SFRH/BD/31526/2006.
5 H. Yoda, H. Yamazaki, M. Kawauchi and K. Takabe, Tetrahedron:
Asymmetry, 1995, 6, 2669–2672.
6 U. Chiacchio, A. Rescifina, D. Iannazzo, A. Piperno, R. Romeo,
L. Borrello, M. T. Sciortino, E. Balestrieri, B. Macchi, A. Mastino
and G. Romeo, J. Med. Chem., 2007, 50, 3747–3750.
7 E. Balestrieri, C. Matteucci, A. Ascolani, A. Piperno, R. Romeo,
G. Romeo, U. Chiacchio, A. Mastino and B. Macchi, Antimicrob.
Agents Chemother., 2008, 52, 54–64.
8 A. R. Van Rompay, M. Johansson and A. Karlsson, Pharmacol.
Ther., 2003, 100, 119–139.
9 (a) O. V. Korenchenko, A. Y. Aksinenko, V. B. Sokolov and
A. N. Pushin, Russ. Chem. Bull., 1998, 47, 1369–1373;
(b) N. M. Kobel’kova, S. N. Osipov and A. F. Kolomiets, Russ.
Chem. Bull., 2002, 51, 1298–1302.
References
1 (a) K. A. Jorgensen, Angew. Chem., Int. Ed., 2000, 39, 3558–3588;
(b) A. Trifonova and P. G. Andersson, Tetrahedron: Asymmetry,
2004, 15, 445–452; (c) C. Hedberg, P. Pinho, P. Roth and
P. G. Andersson, J. Org. Chem., 2000, 65, 2810–2812;
(d) P. Hamley, G. Helmchen, A. B. Holmes, D. R. Marshall, J.
W. M. MacKinnon, D. F. Smith and J. W. Ziller, J. Chem. Soc.,
Chem. Commun., 1992, 786–788; (e) W. Maison, Eur. J. Org.
Chem., 2007, 2276–2284; (f) S. M. Roberts, C. Smith and
R. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1990, 1493–1495;
(g) A. M. Browser and J. S. Madalengoitia, Tetrahedron Lett.,
2005, 46, 2896–2872; (h) A. H. Fray, D. J. Augeri and
E. F. Kleinman, J. Org. Chem., 1988, 53, 896–899;
(i) W. Maison, D. Kuntzer and D. Grohs, Synlett, 2002,
10 C. A. D. Sousa, M. L. C. Vale, J. E. Rodrı
Mera and J. Rodrıguez-Otero, Tetrahedron Lett., 2008, 49,
5777–5781.
guez-Borges, X. Garcıa-
´ ´
´
11 Compounds 4/5 were synthesized as a crude, unstable, yellow-
coloured oil according to a methodology described by Hursthouse
et al. (ref. 2h).
12 C. Brown, R. F. Hudson, A. Maron and K. A. F. Record, J. Chem.
Soc., Chem. Commun., 1976, 663–664.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010 New J. Chem., 2010, 34, 2546–2551 | 2551