and its derivatives,2f ethylene glycol,5a diethylsalicylamide,5b
amino acids,6 oxime-type and Schiff base ligands,7 thiophene-
2-carboxylate,8 bidentate phosphines,9 diphosphinidenecy-
clobutene,10 and diphenyl pyrrolidine-2-phosphonate11 for N-
arylation of amines/amides and 1-naphthoic acid,2a 2,2,6,6-
tetramethylheptane-3,5-dione,2b phosphazene P4-t-Bu base,2c
N,N-dimethylglycine,2d 8-hydroxyquinoline,2e and salicylal-
doxime (Salox)2g for O-arylation of substituted phenol or
alcohol. Although arylphosphonates12 and phosphane oxides13
are of practical application, to the best of our knowledge,
examples of copper-mediated C-P bond formation are rare.14
Since proline is an efficient ligand for the copper-catalyzed
Ullmann coupling reactions,6i,15 here we report it and its
analogue pipecolinic acid as efficient bidentate ligands for the
formation of copper-catalyzed C-P bonds.
Proline/Pipecolinic Acid-Promoted
Copper-Catalyzed P-Arylation
Cheng Huang,† Xu Tang,† Hua Fu,*,† Yuyang Jiang,†,‡ and
Yufen Zhao†
Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology (Ministry of Education), Department of
Chemistry, Tsinghua UniVersity, Beijing 100084, P. R. China,
and Key Laboratory of Chemical Biology, Guangdong ProVince,
Graduate School of Shenzhen, Tsinghua UniVersity, Shenzhen
518057, P. R. China
We initially optimized the catalysis conditions, including
copper source, base, solvent, amount of catalyst, and ligand
(proline or pipecolinic acid), to achieve good coupling yields
of aryl halides with organophosphorus compounds containing
P-H. The experimental results showed the catalyst system using
CuI as the catalyst, Cs2CO3 or DMAP as the base, and toluene
or DMF as the solvent could provide higher coupling yields
(see Table 1 for experimental details). However, no P-arylation
products were obtained when no catalyst or ligand was added
to the reaction system, which indicated that CuI/L could greatly
promote the reactivity of the substrates.
ReceiVed March 7, 2006
We have developed a convenient and efficient approach for
P-arylation of organophosphorus compounds containing
P-H. Using commercially available and inexpensive proline
and pipecolinic acid as the ligands greatly improved the
efficiency of the coupling reactions, so the method can
provide an entry to arylphosphonates, arylphosphinates and
arylphosphine oxides.
(5) (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
581. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793.
(6) (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc.
1998, 120, 12459. (b) Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583. (c) Ma, D.;
Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453. (d) Ma, D.; Cai, Q. Org. Lett.
2003, 5, 3799. (e) Ma, D.; Cai, Q. Synlett 2004, 1, 128. (f) Pan, X.; Cai,
Q.; Ma, D. Org. Lett. 2004, 6, 1809. (g) Zhu, W.; Ma, D. Chem. Commun.
2004, 888. (h) Ma, D.; Liu, F. Chem. Commun. 2004, 1934. (i) Zhang, H.;
Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164.
(7) (a) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Eur. J.
Org. Chem. 2004, 695. (b) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.;
Taillefer, M. Chem. Eur. J. 2004, 10, 5607.
(8) Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem. 1997, 62,
2312.
Copper-catalyzed Ullmann coupling reactions have recently
attracted much attention, including N-arylation of amines/
amides1 and O-arylation of substituted phenol2 or alcohol.3 This
progress relied on the utilization of some special bidentate
additives, for example, aliphatic diamines,4 1,10-phenanthroline
(9) Kelkar, A. A.; Patil, N. M.; Chaudhari, R. V. Tetrahedron Lett. 2002,
43, 7143.
(10) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Yoshifuji, F. Chem.
Commun. 2004, 1994.
(11) Rao, H. H.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. J. Org. Chem. 2005,
70, 8107.
* To whom correspondence should be addressed. Fax: (+86) 10-62781695.
† Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology.
‡ Key Laboratory of Chemical Biology.
(1) For reviews, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
15, 2428. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004,
248, 2337. For other related studies, see: (d) Okano, K.; Tokuyama, H.;
Fukuyama, T. Org. Lett. 2003, 5, 4987. (e) Han, C.; Shen, R.; Su, S.; Porco,
J. A., Jr. Org. Lett. 2004, 6, 27. (f) Buck, E.; Song, Z. J.; Tschaen, D.;
Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002, 4, 1623.
(2) For some recent reports, see: (a) Marcoux, J.-F.; Doye, S.; Buchwald,
S. L. J. Am. Chem. Soc. 1997, 119, 10539. (b) Buck, E.; Song, Z. J.;
Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002,
4, 1623. (c) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Chem.
Commun. 1998, 2091. (d) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799. (e)
Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc.
2000, 122, 5043. (f) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org.
Lett. 2001, 3, 4135. (g) Cristau, H. J.; Cellier, P. P.; Hamada, S.; Spindler,
J. F.; Tailefer, M. Org. Lett. 2004, 6, 913.
(12) For a review, see: (a) Engel, R. In Handbook of Organophosphorus
Chemistry; Engel, R., Ed.; Marcel Dekker: New York, 1992; Chapter 11.
(b) Wester, R. T.; Chambers, R. J.; Green, M. D.; Murphy, W. R. Bioorg.
Med. Chem. Lett. 1994, 4, 2005. (c) Hirschmann, R.; Smith, A. B., III;
Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengeler,
P. A.; Benkovic, S. J. Science 1994, 265, 234. (d) Oishi, S.; Karki, R. G.;
Kang, S.-U.; Wang, X.; Worthy, K. M.; Bindu, L. K.; Nicklaus, M. C.;
Fisher, R. J.; Burke, T. R., Jr. J. Med. Chem. 2005, 48, 764. (e) Jiao, X.-
Y.; Bentrude, W. G. J. Org. Chem. 2003, 68, 3303.
(13) (a) Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109,
85. (b) Pommer, H.; Thieme, P. C. Top. Curr. Chem. 1983, 109, 165. (c)
Kallmerten, J.; Wittman, M. D. Tetrahedron Lett. 1986, 27, 2443. (d) Xu,
Y.; Li, Z.; Xia, J.; Guo, H.; Huang, Y. Synthesis 1984, 781. (e) Dalpozzo,
R.; De Nino, A.; Miele, D.; Tagarelli, A.; Bartoli, G. Eur. J. Org. Chem.
1999, 2299.
(3) (a) Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Alikarami,
M. Synlett 2005, 1101. (b) Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald,
S. L. Org. Lett. 2002, 4, 973.
(4) (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2001, 123, 7727. (b) Antilla, J. C.; Klapars, A.; Buchwald, S.
L. J. Am. Chem. Soc. 2002, 124, 11684. (c) Antilla, J. C.; Baskin, J. M.;
Barder, T. E.; Bchwald, S. L. J. Org. Chem. 2004, 69, 5578.
(14) (a) Ogawa, T.; Usuki, N.; Ono, N. J. Chem. Soc., Perkin Trans. 1
1998, 2953. (b) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5,
2315. (c) Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590.
(d) Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681. (e) Rao,
H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2006, 12, 3636.
(15) (a) Zhu, W.; Ma, D. J. Org. Chem. 2005, 70, 2696. (b) Xie, X.;
Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693.
10.1021/jo060492j CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/27/2006
5020
J. Org. Chem. 2006, 71, 5020-5022