Various methods have been developed using direct benzy-
lation of heteroarenes and directing-group containing
arenes under transition-metal catalysis.10 The Goossen
group and others developed various methods for decar-
boxylative coupling reactions using inexpensive and read-
ily available aromatic carboxylic acids as substrates.11 The
decarboxylative cross-coupling reactions with aryl halides
have proved to be very effective and powerful for biaryl
synthesis. However, this strategy requires ortho-function-
alized benzoic substrates and is not suitable for cross-
coupling reactions with benzyl halides due to the easy
formation of very stable benzyl benzoate derivatives.12
Meanwhile, we and others developed various palladium-
catalyzed desulfitative Heck-type reactions,13 addition
reactions,14 homocoupling reactions,15 and cross-coupling
reactions with CÀH bonds16 using sodium sulfinates as
substrates. Unlike the decarboxylative coupling reactions,
no electron-withdrawing or donating group ortho to the
sulfinic acids group is necessary. We also found that the
reaction of benzylic halides with sodium sulfinates gener-
ates stilbene derivatives in the absence of transition metals.
The formation of benzyl sulfone intermediate plays an
important role in this transformation.17 In continuing with
our interest in using aryl sodium sulfinates as aryl sources,
herein we describe a palladium-catalyzed desulfitative
cross-coupling reactions of sodium sulfinates with benzyl
chlorides, affording diarylmethanes in moderate to good
yields.18
Table 1. Optimization of the Reaction Conditionsa
(9) For recent reviews on CÀH functionalization, see: (a) Dyker, G.
Handbook of CÀH Transformations: Applications in Organic Synthesis;
Wiley-VCH: Weinheim, 2005. (b) Yu, J.; Shi, Z. CÀH Activation; Springer:
Berlin, 2010. (c) Goldberg, K. I.; Goldman, A. S. Activation and Function-
alization of CÀH Bond; ACS Symposium Series 885; American Chemical
ꢀ
Society: Washington, DC, 2004. (d) Diaz-Requejo, M.; Perez, P. Chem. Rev.
2008, 108, 3379. (e) Hartwig, J. Nature 2008, 455, 314. (f) Giri, R.; Shi, B.;
Engle, K.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242. (g) Li,
C. J. Acc. Chem. Res. 2009, 42, 335. (h) Coperet, C. Chem. Rev. 2010,
110, 656. (i) Mkhalid, I.; Barnard, J.; Marder, T.; Murphy, J.; Hartwig,
J. Chem. Rev. 2010, 110, 890. (j) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624. (k) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147.
entry
catalyst
ligand
PPh3
base
solvent
yieldb (%)
ꢀ
1
Pd(OAc)2
PdCl2
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
Na2CO3 dioxane
45
2
PPh3
PPh3
PPh3
PPh3
40
3
PdBr2
24
4
Pd(OH)2
Pd(acac)2
trace
25
(10) (a) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.
2012, 112, 5879. (b) Jaouhari, R.; Dixneuf, P. H. Inorg. Chim. Acta 1988,
145, 179. (c) Kuwano, R.; Kondo, Y.; Matsuyama, Y. J. Am. Chem. Soc.
2003, 125, 12104. (d) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller,
M. Angew. Chem., Int. Ed. 2005, 44, 238. (e) Dong, C. G.; Hu, Q. S.
Angew. Chem., Int. Ed. 2006, 45, 2289. (f) Ren, H. J.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 3462. (g) Kuwano, R.; Shige, T. J. Am. Chem.
Soc. 2007, 129, 3802. (h) Yu, J. Y.; Kuwano, R. Org. Lett. 2008, 10, 973.
(i) Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130,
16158. (j) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160. (k)
5
6
Pd(COD)Cl2 PPh3
44
7
Pd(TFA)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
PPh3
dppe
20
8
50
9
DPEphos Na2CO3 dioxane
21
10
11
12
13
14
15
16
17
18
19
p-Tol3P
Na2CO3 dioxane
Na2CO3 dioxane
58
o-Tol3P
trace
57
m-Tol3P Na2CO3 dioxane
ꢀ
Ackermann, L.; Novak, P. Org. Lett. 2009, 11, 4966. (l) Verrier, C.;
Hoarau, C.; Marsair, F. Org. Biomol. Chem. 2009, 7, 647. (m) Ueno, S.;
Ohtsubo, M.; Kuwano, R. J. Am. Chem. Soc. 2009, 131, 12904. (n)
p-Tol3P
p-Tol3P
p-Tol3P
p-Tol3P
p-Tol3P
p-Tol3P
p-Tol3P
p-Tol3P
NaHCO3 dioxane
t-BuOK dioxane
CH3ONa dioxane
CH3ONa anisole
CH3ONa toluene
CH3ONa DMSO
60
62
ꢀ
Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew. Chem.,
65
Int. Ed. 2009, 48, 6045. (o) Deng, G. J.; Li, C. J. Org. Lett. 2009, 11, 1171.
(p) Mukai, T.; Hirno, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 1360.
66
€
(q) Ackermann, L.; Barfussser, S.; Pospech, J. Org. Lett. 2010, 12, 724.
64
(r) Yi, C. S.; Lee, D. W. Organometallics 2010, 29, 1883. (s) Ackermann,
L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875.
trace
72
CH3ONa cyclohexane
CH3ONa cyclohexane
(11) For recent reviews, see: (a) Goossen, L. J.; Ridrıguez, N.;
Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100. (b) Rodrıguez, N.;
Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. For selected examples on
decarboxylative cross-coupling reactions, see: (c) Goossen, L. J.; Deng,
G. J.; Levy, L. M. Science. 2006, 313, 662. (d) Goossen, L. J.; Rodriguez,
N.; Bettina, M.; Linder, C.; Deng, G. J.; Levy, L. M. J. Am. Chem. Soc.
2007, 129, 4824. (e) Forgione, P.; Brochu, M.; St-Onge, M.; Thesen, K.;
Bailey, M.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.
(12) Otera, J.; Nishikido, J. Esterification: Methods, Reactions and
Applications; Wiley-VCH: Weinheim, 2010.
20c Pd(OAc)2
88
a Conditions: 1a (0.2 mmol), 2a (0.2 mmol), catalyst (5 mol %),
ligand (10 mol %), base (0.3 mmol), solvent (0.6 mL), 120 °C, 4 h under
air unless otherwise noted. b GC yield. c 160 °C.
We began our study by examining the reaction of benzyl
chloride (1a) with p-toluenesulfinic acid sodium salt (2a) in
dioxane by using Pd(OAc)2/PPh3 as catalyst and Na2CO3
as base. When benzyl chloride reacted with an equal
amount of 2a under air, the desired product was obtained
in 45% yield as detected by GCÀMS and 1H NMR
methods (Table 1, entry 1). Then various palladium salts
were investigated for this reaction under similar reaction
(13) (a) Zhou, X. Y.; Luo, J. Y.; Liu, J.; Peng, S. M.; Deng, G. J. Org.
Lett. 2011, 13, 1432. (b) Wang, G.; Miao, T. Chem.;Eur. J. 2011, 17,
5787.
(14) (a) Liu, J.; Zhou, X.; Rao, H.; Xiao, F.; Li, C. J.; Deng, G. J.
Chem.;Eur. J. 2011, 17, 7996. (b) Yao, H.; Yang, L.; Shuai, Q.; Li, C. J.
Adv. Synth. Catal. 2011, 353, 1701. (c) Miao, T.; Wang, G. W. Chem.
€
€
Commun. 2011, 47, 9501. (d) Behrends, M.; Savmarker, J.; Sjoberg, P.;
Larhed, M. ACS Catal. 2011, 1, 1455. (e) Wang, H.; Li, Y.; Zhang, R.;
Jin, K.; Zhao, D.; Duan, C. Y. J. Org. Chem. 2012, 77, 4849. (f) Chen,
W.; Zhou, X.; Xiao, F.; Luo, J.; Deng, G. J. Tetrahedron Lett. 2012, 53,
4347.
(15) Rao, B.; Zhang, W.; Hu, L.; Luo, M. M. Green Chem. 2012, 14,
3436.
(17) Zhao, F.; Luo, J. Y.; Tan, Q.; Liao, Y. F.; Peng, S. M.; Deng,
G. J. Adv. Synth. Catal. 2012, 354, 1914.
(16) (a) Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G. J. Org. Biomol.
Chem. 2011, 9, 7675. (b) Wu, M.; Luo, J.; Xiao, F.; Zhang, S.; Deng,
G. J.; Luo, H. A. Adv. Synth. Catal. 2012, 354, 335. (c) Liu, B.; Guo, Q.;
Cheng, Y.; Lan, J.; You, J. S. Chem.;Eur. J. 2011, 17, 13415. (d) Wang,
M.; Li, D.; Zhou, W.; Wang, L. Tetrahedron 2012, 68, 1926.
(18) Diarylmethanes can be formed using sulfonyl chlorides with
organometals: (a) Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003,
125, 15292. (b) Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95. (c)
Dubbaka, S.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674. (d) Rao
Volla, C.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305.
B
Org. Lett., Vol. XX, No. XX, XXXX