S. Kotha, N. Sreenivasachary, / Bioorg. Med. Chem. Lett. 10 (2000) 1413±1415
1415
that have undergone [2+2+2] cycloaddition reaction to
generate Tic derivatives are shown in Table 1. Some of
the Tic derivatives prepared here deserves a special com-
ment. Trimethylsilyl substituted Tic derivatives (11, 13,
2. Grunewald, G. L.; Caldwell, T. M.; Li, Q.; Criscione, K. R.
Bioorg. Med. Chem. 1999, 7, 869. Kazmierski, W. M.;
Urbanczyk-Lipkowska, Z.; Hruby, V. J. J. Org. Chem. 1994,
5
9, 1789. Prochazka, Z.; Ancans, J. E.; Slaninova, J.;
Machova, A.; Barth, T.; Lebl, M. Collect. Czech. Chem.
Commun. 1990, 55, 1099. Ortwine, D. F.; Malaone, T. C.;
Bigge, C. F.; Drummond, J. T.; Humblet, C.; Johnson, G.;
Pinter. G. W. J. Med. Chem. 1992, 35, 1345.
1
4 and 15) can be used as a building blocks to introduce
10
various electrophiles ipso to the TMS group. Dihy-
droxy compound 6 is a potential precursor for the gen-
eration of Tic-based o-xylylene derivative.11
3
. Moseberg, H. I.; Lomize, A. L.; Wang, C.; Kroona, H.;
Heyl, D. L.; Sobczyk-Kojiro, K.; Ma, W.; Mousigian, C.;
Porreca, F. J. Med. Chem. 1994, 37, 4371; Gibson (nee Tho-
mas), S. E.; Guillo, N.; Tozer, M. J. Tetrahedron 1999, 55, 585.
4. Whaley, W.; Govindachari, T. R. Org. React. 1951, VI, 74;
W. J. Gensler, Org. React. 1951, VI, 191.
In conclusion, we have developed a general strategy for
the synthesis of multifunctional Tic derivatives using tran-
sition metal catalyzed [2+2+2] cycloaddition reaction as
a key step. Given the dearth of Tic derivatives, this
methodology may ®nd useful applications in bioorganic
and medicinal chemistry.
5
. Mash, E. A.; Williams, L. J.; Pfeier, S. S. Tetrahedron
Lett. 1997, 38, 6977. Verschueren, K.; Toth, G.; Tourwe, D.;
Lebl, M.; Binst, G. V.; Hruby, V. Synthesis 1992, 458. Wang,
C.; Mosberg, H. I. Tetrahedron Lett. 1995, 36, 3623.
6
. Beifuss, U.; Kunz, O.; Ledderhose, S.; Taraschewski, M.
General procedure for a [2+2+2] cycloaddition reaction
using CpCo(CO) conditions
T.; Tonko, C. Synlett 1996, 34. Shinohara, T, Takeda, A.;
Toda, J.; Ueda, Y.; Kohno, M.; Sano, T. Chem. Pharm. Bull.
2
1998, 46, 918. Padwa, A.; Brodney, M. A.; Liu, B.; Satake, K.;
Wu, T. J. Org. Chem. 1999, 64, 3595.
7. Stork, G.; Leong, A. Y.; Touzin, A. M. J. Org. Chem. 21
To a re¯uxing solution of diyne building block (0.1
mmol) containing CpCo(CO) (0.3 mL) was added a
solution of monoyne containing CpCo(CO) in toluene/
2
octane under nitrogen atmosphere over a period of 6±10
h (syringe pump). The reaction ¯ask was connected to
vacuum distillation set up and all the volatiles were dis-
tilled o to give the crude product. The dark oily resi-
due was chromatographed on a silica gel column by
eluting with pet ether and ethyl acetate mixture to give
cotrimerized product.
2
1
2
8
982 3491. O'Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982,
663.
. Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc. Perkin.
Trans. 1 1988, 1357. Muller, E. Synthesis 1974, 761; Colin, P.
D. J. Chem. Soc. Perkin Trans. 1 1998, 3873.
9
. Vollhardt, K. P. C. Pure Appl. Chem. 1993, 65, 153. Toda,
F.; Garratt, P. Chem. Rev. 1992, 92, 1685. Witulski, B.; Sten-
gel, T. Angew. Chem., Int. Ed. Engl. 1999, 38, 2426. Sato, Y.;
Nishimata, T.; Mori, M. Heterocycles 1997, 44, 443. Sato, Y.;
Ohashi, K.; Mori, M. Tetrahedron Lett. 1999, 40, 5231.
1
1
1
0. Bennetau, B.; Dunogues, J. Synlett 1993, 171.
1. Martin, N.; Seoane, C.; Hanack, M. Org. Prep. Pro. Int.
991, 23, 237. 13C NMR data for selected compounds: (1) d
Acknowledgements
We thank DST for the ®nancial support and RSIC Mum-
bai, Prof. A. Srikrishna for recording the spectral data. N.
S. thanks CSIR, New Delhi for the award of fellowship.
13.8, 20.7, 21.4, 34.3, 58.0, 61.7, 71.5, 73.0, 78.3, 78.9, 127.7,
129.3, 136.7, 143.7, 169.0. (5) d 0.03, 14.3, 21.1, 21.9, 35.8,
58.7, 62.1, 71.7, 79.7, 99.3, 100.2, 128.3, 129.7, 137.6, 143.9,
169.4. (6) d 13.7, 21.5, 31.5, 44.0, 53.5, 61.3, 63.5, 127.2, 127.3,
129.5, 129.9, 130.3, 130.6, 135.9, 137.9, 143.6, 170.1. (7) d 13.8,
References and Notes
21.5, 31.7, 44.1, 53.8, 61.3, 126.5, 127.4, 127.8, 128.1, 129.5,
1
29.7, 130.8, 139.1, 140.8, 143.5, 170.2. (11) d 1.9, 14.0, 21.5,
1
. Kametani, T. In The Total Synthesis of Natural Products,
ApSimon, J., Ed.; John Wiley: New York, 1977; Vol. 3, pp 1±
72; Bently, K. W The Isoquinoline Alkaloids, Harwood Aca-
demic: Singapore, 1998.
31.9, 44.2, 53.7, 61.1, 127.4, 129.4, 130.1, 130.9, 133.0, 135.7,
136.5, 143.2, 144.1, 170.1. (12) d 14.0, 21.6, 31.9, 44.1, 52.5,
53.0, 61.2, 127.1, 127.5, 129.5, 130.5, 130.6, 134.3, 134.9, 136.2,
143.4, 167.0, 169.2, 169.4.
2