W. Rao et al. / Tetrahedron Letters 49 (2008) 122–126
125
Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem.
Soc. 2002, 124, 10968; (f) Mukhopadhyay, M.; Iqbal, J.
Tetrahedron Lett. 1995, 36, 6761; (g) Baruah, J. B.;
Samuelson, A. G. J. Organomet. Chem. 1989, 361, C57.
5. Bisaro, F.; Pretat, G.; Vitale, M.; Poli, G. Synlett 2002,
1823.
6. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed.
2006, 45, 793.
7. (a) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007,
48, 4065; (b) Salehi, P.; lranpoor, N.; Behbahani, F. K.
Tetrahedron 1998, 54, 943.
conditions described in Scheme 2. Dimer 4a could be
converted to 3a in 95% yield on treatment with 2.4 equiv
of 1a and 10 mol % of iodine catalyst in CH2Cl2 for 16 h
at room temperature.
Although the above experimental results do not provide
a clear perspective on the mechanism of the present pro-
cedure, we tentatively propose that the reaction pro-
ceeds via formation of an allylic carbocation species
from reaction of the allylic alcohol 2 with HI generated
in situ. The regioselectivities obtained in these reactions
could be due to subsequent attack at the sterically less
hindered carbon of this presumed allylic carbocation
intermediate by 1 or another molecule of 2 to produce
the reactive dimer 4, which, as mentioned earlier, reacts
further in the presence of 1 to give the allylated product
3. The role of iodine in facilitating the in situ generation
of HI is supported by the fact that 3b was obtained in a
comparable yield of 93% for the analogous reaction of
1a with 2b under the same conditions to those described
in Table 2, entry 1 but with NaI (5 mol %) and trifluoro-
acetic acid (5 mol %) in place of iodine as catalyst.
8. (a) Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72,
5161; (b) Huang, W.; Wang, J.; Shen, Q.; Zhou, X.
Tetrahedron Lett. 2007, 48, 3969.
9. Reping, M.; Nahtsheim, B. J.; Kuenkel, A. Org. Lett.
2007, 9, 825.
´
´
´
10. Sanz, R.; Martınez, A.; Miguel, D.; Alvarez-Gutierrez, J.
´
M.; Rodrıguez, F. Adv. Synth. Catal. 2006, 348, 1841.
11. Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006,
45, 2605.
12. For a recent review, see (a) Togo, H.; Iida, S. Synlett 2006,
2159; For selected examples, see: (b) Yadav, J. S.; Reddy,
B. V. S.; Reddy, U. V. S.; Krishna, A. D. Tetrahedron
Lett. 2007, 48, 5243; (c) Varala, R.; Nuvula, S.; Adapa, S.
R. J. Org. Chem. 2006, 71, 8283; (d) Lin, C.; Fang, H.; Tu,
Z.; Liu, J.; Yao, C. J. Org. Chem. 2006, 71, 6588; (e) Gao,
S.; Tzeng, T.; Sastry, M. N. V.; Chu, C.; Liu, J.; Lin, C.;
Yao, C. Tetrahedron Lett. 2006, 47, 1889; (f) Wang, S.-Y.;
Ji, S.-J.; Loh, T.-P. Synlett 2003, 2377; (g) Yadav, J. S.;
Reddy, B. V. S.; Rao, C. V.; Reddy, S. G. Synlett 2003,
247; (h) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Rao, K.
V. J. Chem. Soc., Perkin. Trans. 1 2002, 1401; (i)
Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Tetrahedron
Lett. 2002, 43, 3653; (j) Yadav, J. S.; Reddy, B. V. S.; Rao,
C. V.; Sabitha, G.; Reddy, S. G. Synthesis 2000, 1532.
13. Liu, Z.; Liu, L.; Shafiq, Z.; Wu, Y.-C.; Wang, D.; Chen,
Y.-J. Tetrahedron Lett. 2007, 48, 3963.
In summary, we have demonstrated a practical and
operationally simplistic method for the allylation of
1,3-dicarbonyl compounds under atmospheric condi-
tions at room temperature that proceeded in good to
excellent yields. The present protocol is applicable to a
variety of 1,3-dicarbonyl compounds and allylic
alcohols containing electron-withdrawing and electron-
donating, and sterically demanding substrate combina-
tions. Efforts are currently underway to examine the
scope and mechanism of this reaction and will be
reported in due course as part of a full paper.
14. Rao, W.; Chan, P. W. H. Tetrahedron Lett. 2007, 48, 3789.
15. Typical experimental procedure: To a CH2Cl2 (2 mL)
solution of 1 (0.3 mmol, 1 equiv) and 2 (0.36 mmol,
1.2 equiv) contained in a round bottom flask open to air
at room temperature was added molecular iodine
(15 lmol, 5 mol %). The reaction was stirred until com-
pletion (TLC analysis). The reaction mixture was
quenched with aqueous Na2S2O3 (10 mL) and extracted
with CH2Cl2 (10 mL). The organic layer was washed with
brine (10 mL), dried over anhydrous MgSO4, concen-
trated, and purified by flash silica gel column chromato-
graphy (n-hexane/EtOAc as eluent) to give 3.
Acknowledgement
This work was supported by a College of Science Start-
Up Grant from Nanyang Technological University.
References and notes
1
16. Representative data for 3c: white solid; H NMR (CDCl3,
1. (a) Larock, R. C. Comprehensive Organic Transformation;
VCH: New York, 1999; (b)Palladium Reagents and
Catalysts; Tsuji, J., Ed.; Wiley: Chichester, 1995; (c)
Godleski, S. A. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford,
1991; Vol. 4, Chapter 3.3; (d) Tsuji, J.; Minami, I. Acc.
Chem. Res. 1987, 20, 140; (e) Trost, B. M. Acc. Chem. Res.
1980, 13, 385.
400 MHz) d 7.44 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.4 Hz,
2H), 7.11–7.14 (m, 4H), 6.33 (d, 1H, J = 15.8 Hz), 6.12
(ddd, 1H, J = 15.7, 6.2, 1.3 Hz), 4.13–4.47 (m, 2H), 2.23
(s, 3H), 1.95 (s, 3H); 13C NMR (CDCl3, 100 MHz) d
202.3, 202.1, 138.9, 135.2, 132.2, 131.0, 129.7, 129.4, 127.9,
121.7, 121.3, 74.3, 48.3, 30.0, 29.7; IR (film, cmꢀ1) 1728,
1697, 1487, 1356, 1072; Anal. Calcd for C20H18Br2O2: C,
53.36; H, 4.03. Found: C, 53.27; H, 4.29. Compound 3k:
2. (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695; (b) Trost,
B. M. Science 1991, 254, 1471.
1
white solid; H NMR (CDCl3, 400 MHz) d 8.03 (d, 2H,
J = 7.4 Hz), 7.80 (d, 2H, J = 7.5 Hz), 7.08–7.56 (m, 16H),
6.54 (dd, 1H, J = 15.6, 10.3 Hz), 6.34 (d, 1H, J = 15.6 Hz),
6.14 (dd, 1H, J = 15.0, 10.4 Hz), 5.90–5.98 (m, 2H), 4.75
(t, 1H, J = 9.0 Hz); 13C NMR (CDCl3, 100 MHz) d 194.3,
193.8, 140.8, 137.2, 136.9, 133.9, 133.5, 133.3, 132.6, 132.2,
128.9, 128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 127.4, 126.9,
126.3, 62.8, 50.0; IR (film, cmꢀ1) 1695, 1663, 1447, 1261,
989, 691; Anal. Calcd for C32H26O2: C, 86.85; H, 5.92.
Found: C, 86.51; H, 6.52.
3. (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921; (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev.
1996, 91, 395.
4. (a) Kayaki, Y.; Koda, T.; Ikariya, T. J. Org. Chem. 2004,
69, 2595; (b) Kinoshita, H.; Shinokubo, H.; Oshima, K.
Org. Lett. 2004, 6, 4085; (c) Manabe, K.; Kobayashi, S.
Org. Lett. 2003, 5, 3241; (d) Kimura, M.; Mukai, R.;
Tanigawa, N.; Tanaka, S.; Tamaru, Y. Tetrahedron 2003,
59, 7767; (e) Ozawa, F.; Okamoto, H.; Kawagishi, S.;