lines by the direct or reverse approach.1b,6 The Fischer indole
reaction gives partially hydrogenated R-carbolines from
2-piperidone phenylhydrazones or cyclohexanone 2-pyridyl-
hydrazones.7
A number of syntheses from other diverse starting materi-
als have been reported. For example, 2(1H)-pyrazinones,
N-arylcarbodiimides, and 2-arylaminopyrimidines give R-car-
bolines through intramolecular Diels-Alder reactions.8
Finally, (o-pivaloylamino)phenyl-o′-fluoropyridines have also
been reported as starting materials in nucleophilic aryl-
fluorine displacement reactions.9
we decided to improve it by making use of microwave
technology.12
In this paper we wish to report the synthesis of the
R-carboline core through the modified Graebe-Ullman
reaction under microwave irradiation using four different
types of microwave ovens.13
Considering the modified Graebe-Ullman reaction as a
two-step process from commercially available starting ma-
terials, we first optimized the synthesis of pyridylbenzotri-
azole (1a) from benzotriazole (2a) and 2-chloro-6-meth-
ylpyridine (3a) as a model (Scheme 1).
As part of a wider project aimed at finding heteroaromatic
structures bearing a bridged nitrogen atom and having
selective DNA-intercalative properties as well as cyto-
toxic activities, we previously studied the synthesis, reactiv-
ity, and biological behavior of structures with a quino-
lizinium-type core.10 For instance, a number of com-
pounds derived from â- and γ-carbolines have been reported
by us.11 We have now turned our attention to the R-carboline
core.
Scheme 1. Microwave Synthesis of R-Carboline 4a
Most of the syntheses of R-carbolines are low yielding
and require several steps from starting materials that are not
commercially available. We therefore selected the modified
Graebe-Ullman reaction as the shortest route to access
R-carbolines. This approach is not particularly efficient so
(5) (a) Molina, P.; Fresneda, P. M. Synthesis 1989, 878-880. (b) Beccalli,
E. M.; Clerici, F.; Marchesini, A. Tetrahedron 2001, 57, 4787-4792. (c)
Erba, E.; Gelmi, M. L.; Pocar, D. Tetrahedron 2000, 56, 9991-9997. (d)
Ono, A.; Narasaka, K. Chem. Lett. 2001, 146-147. (e) Achab, S.; Guyot,
M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615-2618. (f) Forbes, I. T.;
Johnson, C. N.; Thompson, M. J. Chem. Soc., Perkin. Trans. 1 1992, 275-
281.
Optimized results for this reaction are shown in Table 1.
The classical reaction was first optimized as a function of
(6) (a) Kaczmarek, L.; Peczynka-Czoch, W.; Osiadacz, J.; Mordarski,
M.; Sokalski, W. A.; Boratynski, J.; Marcinkovska, E.; Glazman-Kusnierc-
zyk, H.; Radzikowski, C. Bioorg. Med. Chem. Lett. 1999, 7, 22457-2464.
(b) Laurson, W.; Perkin, W. H.; Robinson, R. J. Chem. Soc. 1924, 125,
626. (c) Kaczmarek, L.; Balicki, R.; Nantka-Namirski, P.; Peczynska-Czoch,
W.; Mordarski, M. Arch. Pharm. (Weinheim, Ger.) 1988, 321, 463-467.
(b) Mehta, L. K.; Parrick, J.; Payne, F. J. Chem. Soc., Perkin. Trans. 1
1993, 1261-1267.
Table 1. Optimized Yields and Conditions for 1a
(7) (a) Okuda, S.; Robinson, M. M. J. Am. Chem. Soc. 1959, 81, 740.
(b) Yamazaki, T.; Matoba, K.; Imoto, S.; Terashima, M. Chem. Pharm.
Bull. 1976, 24, 3011.
(8) (a) Tahri, A.; Buysens, K. J.; Van der Eycken, E. V.; Vanderberghe,
D. M.; Hoornaert, G. J. Tetrahedron 1998, 54, 13211-13226. (b) Molina,
P.; Alajar´ın, M.; Vidal, A.; Sa´nchez-Aranda, P. J. Org. Chem. 1992, 57,
929-939. (c) Forbes, I. T.; Johnson, C. N.; Thompson, M. Synth. Commun.
1993, 23, 715-723.
power
(W)j
temp
(°C)
time
(min)
yield
(%)b,k
entry
methoda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
thermal
Ac
155
nd
nd
nd
nd
nd
nd
nd
nd
30
10
15
10
10
10
10
10
10
10
15
7
70
40
36
49
41
10
36
dec
31
32
69
59
72
66
145
50
(9) Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron 1993,
49, 49-64.
Ac
(10) Vaquero, J. J.; Alvarez-Builla, J. AdV. Nitrogen Heterocycl. 2000,
4, 159-250.
Bc
150
190
150
150
150
150
150
300
300
50
Bc
(11) (a) Molina, A.; Vaquero, J. J.; Garc´ıa-Nav´ıo, J. L.; Alvarez-Builla,
J.; de Pascual-Teresa, B.; Gago, F.; Rodrigo, M. M. J. Org. Chem. 1999,
64, 3907. (b) Fontana, A.; Benito, E. J.; Mart´ın, M. J.; Sa´nchez, N.; Alajar´ın,
R.; Vaquero, J. J.; Alvarez-Builla, J.; Lambel-Giraudet, S.; Leonce, S.;
Pierre´, A.; Caignard, D. Bioorg. Med. Chem. Lett. 2002, 12, 2611-
2614.
Bc,d
Bc,e
Bc,f
Bc,g
Bh
nd
(12) (a) Kappe, C. O.; Stadler, A. MicrowaVes in Organic and Medicinal
Chemistry; Wiley-VCH: Weinheim, Germany, 2005. (b) MicrowaVe
Assisted Organic Synthesis; Tierney, J. P., Lidstrom, P., Eds.; Blackwell
Publishing: Oxford, UK, 2005.
(13) (a) Domestic microwave A: Samsung M1719N.; Domestic micro-
wave B (inverter technology): Panasonic NN-F359WBE.; Focused micro-
wave C: Synthewave 402 from Prolabo; Focused microwave D: Explorer
from CEM. (b) Inverted technology replaces the conventional transformer
and capacitor of classic microwave ovens with an inverter circuit board,
which gives a constant power at every level, improving the efficiency of
the power supply. (c) Microwave digestion bomb model 4781 from Parr
Inc. CAUTION: domestic microwave apparatus are not safe when using
sealed reactors.
Cc
170
170
180
180
Cc
Di
10
10
Di
70
a A and B: domestic microwave ovens. C and D: focused microwave
ovens. See ref 13a. b Isolated yields. c Open vessel. d Adsorbed on silica
gel. e Disolved in ethanol. f Disolved in DMF. g Disolved in toluene. h 24
mL sealed vessel. See ref 13c. i 20 mL sealed vessel. j nd: not determined.
k dec: decomposition.
416
Org. Lett., Vol. 8, No. 3, 2006