5
318
A. C. Benniston et al. / Tetrahedron Letters 52 (2011) 5315–5318
mentary data). In particular, the intensity of those bands centered
at 411, 316 and 283 nm diminished gradually during photolysis,
but reached a steady-state value after some 30 min or so (see Sup-
plementary data). There is also a modest blue-shift and line-nar-
rowing for the lower-energy absorption band. After photolysis,
the absorption profile shows signs of partial recovery over a few
hours but on prolonged standing in the dark it becomes clear a
new species was formed. A similar experiment performed on 5 in
Supplementary data (a selection of cyclic voltammograms re-
corded for AZV and methyl ester 5 at different scan rates. DFT calcu-
lation results, fitted spectra and absorption spectra for AZV, 4 and 5
References and notes
1.
Benniston, A. C.; Mackie, P. R. In Nanostructured Materials and Nanotechnology;
3
aerated CH CN resulted in the expected blue-shift and increase
Nalwa, H. S., Ed.; Academic Press: London, 2002; pp 693–747.
in intensity to the absorption band centered at 442 nm. Rather sur-
prisingly, no major changes to the absorption spectrum occurred
after leaving the sample in the dark for several hours (see Supple-
2. Shinkai, S.; Yoshioka, A.; Nakayama, H.; Manabe, O. J. Chem. Soc., Perkin Trans. 2
990, 1905–1909.
1
3
4
.
.
Kikuchi, J.; Egami, K.; Suehiro, K.; Murakami, Y. Chem. Lett. 1992, 1685–1688.
Amabilino, D. B.; Dietrich-Buchecker, C. O.; Livoreil, A.; Pérez-García, L.;
Sauvage, J.-P.; Stoddart, J. F. J. Am. Chem. Soc. 1996, 118, 3905–3913.
mentary); after 3 days a shoulder appeared on the longer-wave-
length band. Prior work by Joshua et al.27 concluded that
5. Ashton, P. R.; Balzani, V.; Becher, J.; Credi, A.; Fyfe, M. C. T.; Mattersteig, G.;
Menzer, S.; Nielsen, M. B.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.; Williams, D.
J. J. Am. Chem. Soc. 1999, 121, 3951–3957.
irradiation of 5 in 1,2-dichloroethane results in no permanent
change to the molecule, and that the observed color change arises
from trans to cis isomerization. Our findings suggest, however, that
the overall behavior is more complex. It would appear that trans to
cis isomerization of the azobenzene unit does take place upon illu-
mination of AZV, but this is followed by secondary events that lead,
in part, to decomposition of the compound.
Although alkylation products of 4 could not be isolated pure,
2 2
photoisomerization of the basic cyclophane was tested in CH Cl
and 2-MeTHF. Illumination of either solution with white light re-
sulted in no real appreciable change in the UV–visible spectrum
6. Benniston, A. C.; Harriman, A.; Lynch, V. M. J. Am. Chem. Soc. 1995, 117, 5275–
5291.
7.
Dvomikovs, V.; House, B. E.; Kaetzel, M.; Dedman, J. R.; Smithrud, D. B. J. Am.
Chem. Soc. 2003, 125, 8290–8301.
8. Jeppesen, J. O.; Nielsen, K. A.; Perkins, J.; Vignon, S. A.; Di Fabio, A.; Ballardini,
R.; Gandolfi, M. T.; Venturi, M.; Balzani, V.; Becher, J.; Stoddart, J. F. Chem. Eur. J.
2003, 9, 2982–3007.
9.
Fioravanti, G.; Haraszkiewicz, N.; Kay, E. R.; Mendoza, S. M.; Bruno, C.;
Marcaccio, M.; Wiering, P. G.; Paolucci, F.; Rudolf, P.; Brouwer, A. M.; Leigh, D.
A. J. Am. Chem. Soc. 2008, 130, 2593–2601.
10. Balzani, V.; Credi, A.; Venturi, M. Chem. Soc. Rev. 2009, 38, 1542–1550.
11. Barrett, C. J.; Mamiya, J.; Yager, K. G.; Ikeda, T. Soft Matter 2007, 3, 1249–1261.
12. Benniston, A. C. Chem. Soc. Rev. 2006, 25, 427–435.
(
see Supplementary data). It is possible that a single or concerted
13. Yager, K. G.; Barrett, C. J. J. Photochem. Photobiol. A Chem. 2006, 182, 250–261.
14. Mativetsky, J. M.; Pace, G.; Elbing, M.; Rampi, M. A.; Mayor, M.; Samori, P. J. Am.
Chem. Soc. 2008, 130, 9192–9193.
isomerization of the azobenzene groups is too difficult, or that the
thermal cis to trans isomerization rate is fast. Even so, the com-
puted cyclophane structure reveals existence of a highly oxy-
gen-rich central cavity consummate for binding metal ions. We
expect to explore this type of chemistry, especially with lantha-
nide ions.
A prototypic light-activated variable resistor has been designed
and synthesized as part of this work. A key finding is that the com-
pact azobenzene–viologen cyclophane can be assembled by way of
a simple esterification reaction, although both [1+1] and [2+2]
products appear. Stable products emerging from the subsequent
15. Bockman, T. M.; Kochi, J. K. J. Org. Chem. 1990, 55, 4127–4135.
16. Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.; Harrington, R. W.; Clegg, W.
Chem. Eur. J. 2007, 13, 7838–7851.
17. Zhang, C.; He, Y.; Cheng, H.-P.; Xue, Y.; Ratner, M. A.; Zhang, X.-G.; Krstic, P.
Phys. Rev. B 2006, 73, 125445-1–125455-5.
18. Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P. Tetrahedron Lett. 2005, 46,
291–7293.
7
19. Doumit, C. J.; McPherson, G. L.; Belford, R. L.; Lanoux, S. B.; Janassen, H. B. Inorg.
Chem. 1977, 16, 565–569.
20. Data for 3: 1H NMR (300 MHz, CDCl ): d = 8.70 (2H, s), 8.55 (2H, d, J = 4.6 Hz),
3
7.87 (2H, dd, J = 7.8, 1.4 Hz), 7.68 (2H, dt, J = 7.8, 1.4 Hz), 7.54 (2H, dd, J = 8.0,
1
.2 Hz), 7.50 (2H, dt, J = 7.6, 1.4 Hz), 7.29 (2H, d, J = 5.0 Hz). 13C NMR (CDCl
3
):
d = 164.7, 153.3, 147.5, 144.8, 144.5, 136.0, 133.8, 131.7, 130.2, 125.5, 124.0,
0
N-alkylation of the 4,4 -bipyridine unit are found only for the smal-
+
1
21.8; HRMS (NSI) found: 423.1088 [M+H] , C24
21. Data for 4: 1H NMR (300 MHz, CDCl
): d = 8.73 (4H, d, J = 4.8 Hz), 8.66 (4H, s),
.64 (4H, dd, J = 7.7, 1.4 Hz), 7.49 (4H, d, J = 4.8 Hz), 7.32 (4H, dt, J = 7.7, 1.2 Hz),
.21 (4H, dt, J = 7.7, 1.2 Hz), 6.91 (4H, dd, J = 8.0, 1.2 Hz); HRMS (NSI) found:
15 8 4
H O N requires: 423.1088.
ler cyclophane, with the resultant dicationic species being sub-
jected to considerable internal strain. Part of the design rationale
for this system revolved around the desire to twist the viologen
subunit by way of light-activated trans to cis isomerization at the
corresponding azobenzene unit. Unfortunately, internal strain is
so severe that it disturbs both subunits. A direct consequence of
this effect is that the mono-cation formed on electrochemical
reduction of the viologen is unable to adopt a planar geometry
and undergoes a competing chemical reaction that relieves the ste-
ric strain. Somewhat surprisingly given this behavior, photo-in-
duced trans to cis isomerization is observed for the target
cyclophane, raising the possibility to study the electrochemical
behavior of the cis form by cyclic voltammetry. Such studies are
currently in progress and will be reported at a later date.
3
7
7
8
+
29 8 8
45.2104 [M+H] , C48H O N requires: 845.2103.
22. Engbersen, J. F. J.; Geurtsen, G.; De Bie, D. A.; Van der Plas, H. C. Tetrahedron
988, 44, 1795–1802.
3. Data for AZV: 1H NMR (300 MHz, CDCl
.09 (2H, d, J = 6.3 Hz), 7.88 (2H, dd, J = 7.7, 1.3 Hz), 7.84 (2H, dt, J = 7.1, 1.4 Hz),
1
2
3
): d = 9.09 (2H, s), 8.67 (2H, d, J = 6.4 Hz),
8
1
3
7.79 (2H, dd, J = 8.0, 1.3 Hz), 7.66 (2H, dt, J = 7.5, 1.4 Hz), 4.36 (s, 6H). C NMR
CDCl ): d = 164.3, 152.6, 147.4, 144.1, 141.6, 141.5, 135.5, 132.2, 132.1, 130.9,
(
3
1
9
124.2, 123.2, 50.2. F NMR (CDCl
3
): d = ꢀ79.3. HRMS (NSI) found: 601.0985 [M-
+
CF
3
SO
3
] , C27
H
20
F
3
N
4
O
S
7 1
requires: 601.0999. Elemental analysis found C,
45.53; H, 3.57; N, 6.84, C28H20F N O S .Et O requires C, 46.60; H, 3.67; N, 6.79.
6
4
10
2
2
For partial solvate C28
4. Selected X-ray data: C32
c = 13.8669(8); = 76.073(5) , b = 73.957(5) ,
H
20
F
6
N
4
O
10
S
2
.0.5 Et
2
O C, 45.75; H, 3.20; N, 7.11.
2
H
30
F
6
N
4
O
11
2
S ; 824.72; a = 11.6190(7), b = 11.9384(6),
o
o
o
a
c
= 71.458(5) ; V = 1727.82(17)
3
2
Å ; Z = 2; F(0 0 0) = 848;
R
indices [F > 2r] R1 = 0.0537, wR2 = 0.1463; R
indices (all data) R1 = 0.0721, wR2 = 0.1585. Crystallographic data (excluding
structure factors) for the structures in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication no.
CCDC 827803. Copies of the data can be obtained, free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or
e-mail: deposit@ccdc.cam.ac.Uk).
Acknowledgments
This work was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC EP/G0409X/1 and EP/F03637X/1).
The EPSRC-sponsored Mass Spectrometry Service at Swansea is
also thanked for collecting the mass spectra of certain compounds.
Supplementary data
25. Lednev, I. K.; Ye, T.-Q.; Matousek, P.; Towrie, M.; Foggi, P.; Neuwahl, F. V. R.;
Umapathy, S.; Hester, R. E.; Moore, J. N. Chem. Phys. Lett. 1998, 290, 68–74.
26. Birnbaum, P. P.; Linford, J. H.;Style, D. W. G. Trans. FaradaySoc. 1953, 49, 735–744.
7. Joshua, C. P.; Rajasekharan Pillai, V. N. R. Tetrahedron Lett. 1973, 37, 3559–3562.
2