7
26
E. Baron et al. / Tetrahedron Letters 43 (2002) 723–726
(1.88 g, 88%) as a brown solid, mp 93–95°C; R (Et O)
8
. Ling, R.; Yoshida, M.; Mariano, P. S. J. Org. Chem.
996, 61, 4439–4449.
. (a) Ling, R.; Mariano, P. S. J. Org. Chem. 1998, 63,
072–6076; (b) Cho, S. J.; Ling, R.; Kim, A.; Mariano, P.
S. J. Org. Chem. 2000, 65, 1574–1577.
0. Lu, H.; Mariano, P. S.; Lam, Y.-f. Tetrahedron Lett.
001, 42, 4755–4757.
f
2
−1 1
3 3
1
0.8; IR (CHCl ) 1321, 1159, 719 cm ; H NMR (CDCl ,
9
270 MHz): l 7.83 (d, 2H, J=8.5), 7.34 (d, 2H, J=8.5),
5.95 (br s, 2H), 3.86–3.83 (m, 1H), 3.72–3.71 (m, 1H),
6
13
2.59 (br s, 2H), 2.45 (s, 3H); C NMR (67.9 MHz,
1
CDCl ): l 144.3, 138.1, 135.3, 129.6, 127.9, 127.3, 50.7,
3
+
4
2
44.5, 35.6, 21.6; MS (CI, NH ) m/z 236 M+NH , 82;
HRMS (CI, NH ) m/z calcd for C H NO S M+H
3
+
1
1
1. Knight, J. G.; Muldowney, M. P. Synlett 1995, 949–951.
2. Atkinson, R. S.; Meades, C. K. J. Chem. Soc., Perkin
Trans. 1 2001, 1518–1527.
3
12 14
2
236.0745, found 236.0744.
17. White, R. D.; Wood, J. L. Org. Lett. 2001, 3, 1825–1827.
18. Stien, D.; Anderson, G. T.; Chase, C. E.; Koh, Y.-h.;
Weinreb, S. M. J. Am. Chem. Soc. 1999, 121, 9574–9579.
19. (a) Sundram, H.; Golebiowski, A.; Johnson, C. R. Tetra-
hedron Lett. 1994, 35, 6975–6976; (b) Kelly, R. C.; Schlet-
ter, I.; Stein, S. J.; Wierenga, W. J. Am. Chem. Soc. 1979,
1
3. Olivo, H. F.; Hemenway, M. S.; Hartwig, A. C.; Chan,
R. Synlett 1998, 247–248.
1
4. For other routes to 4-amino substituted cyclopentenes
(
e.g. 2), see: Barrett, S.; O’Brien, P.; Steffens, H. C.;
Towers, T. D.; Voith, M. Tetrahedron 2000, 56, 9633–
640 and references cited therein.
9
101, 1054–1056.
20. Spectroscopic data for 13: H NMR (CDCl
1
1
5. (a) D’Ambrosio, M.; Debitus, C.; Ribes, O.; Pusset, J.;
, 270 MHz):
3
Leroy, S.; Pietra, F. Chem. Commun. 1993, 1305–1306;
l 6.14 (br d, 1H, J=6.0), 6.06 (dd, 1H, J=2.0, 6.0), 5.74
(br d, 1H, J=5.0), 5.57 (br d, 1H, J=5.0), 5.01 (d, 1H,
J=5.0), 4.33–4.29 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 1.45
(
b) D’Ambrosio, M.; Guerriero, A.; Chiasera, G.; Pietra,
F. Helv. Chim. Acta 1994, 77, 1895–1902; (c) D’Ambro-
sio, M.; Guerriero, A.; Ripamonti, M.; Debitus, C.;
Waikedre, J.; Pietra, F.. Helv. Chim. Acta 1996, 79,
13
(s, 9H); C NMR (67.9 MHz, CDCl ): l 171.5, 170.4,
3
155.8, 137.2, 132.7, 81.2, 80.4, 75.9, 57.5, 28.7, 21.42,
21.36.
7
27–735.
1
6. Preparation of 1: PhIꢀNTs (3.4 g, 9.0 mmol) was added
portionwise to a stirred solution of freshly distilled
cyclopentadiene (1.2 g, 18.2 mmol) and Cu(acac)2 (240
21. For a review, see: O’Brien, P. J. Chem. Soc., Perkin
Trans. 1 1998, 1439–1457. For leading references, see: de
Sousa, S. E.; O’Brien, P.; Pilgram, C. D. Tetrahedron
Lett. 2001, 42, 8081–8083; de Sousa, S. E.; O’Brien, P.;
Steffens, H. C. Tetrahedron Lett. 1999, 40, 8423–8425.
22. de Sousa, S. E.; O’Brien, P.; Poumellec, P. J. Chem. Soc.,
Perkin Trans. 1 1998, 1483–1492.
mg, 0.9 mmol) in MeCN (10 mL) at 0°C under N . After
2
stirring for 15 min, the reaction was allowed to warm to
rt and stirred for a further 45 min. Then, the reaction
mixture was poured into NaOH(aq.) (1 M, 200 mL). Et O
2
(
50 mL) was added and the layers were separated. The
23. The phenylselenide route used to generate diacetate 13
(from 12) was low yielding when applied to the conver-
sion of epoxide 10 into allylic alcohol 15.
aqueous layer was extracted with Et O (2×50 mL) and
the combined organic extracts were dried (Na SO ) and
2
2
4
evaporated under reduced pressure. The crude product
24. Kee, A.; O’Brien, P.; Pilgram, C. D.; Watson, S. T.
was placed under high vacuum for 2 h to give aziridine 1
Chem. Commun. 2000, 1521–1522.