5
970
D. Rost et al. / Tetrahedron Letters 49 (2008) 5968–5971
Table 1
be explained by the release of hexafluoro benzene from a ruthe-
nium catalyst—hexafluorobenzene complex.
Formation of tetrasubstituted olefins with catalyst 2
Product
Cat. (mol %)
Conversions
isolated yields) (%)
In conclusion, we have developed a new catalytic system for the
efficient formation of tetrasubstituted olefins, which requires low
catalyst loadings and even allows the conversion of electron defi-
cient olefins in high yields and very short reaction times. Detailed
studies on the influence of hexafluorobenzene in ruthenium com-
plex catalyzed metathesis reactions are currently ongoing in our
group.
(
Ts
N
1
1
5
>99 (99)
>99a
O
Acknowledgment
E
E
The authors acknowledge support from the Cluster of Excel-
lence ‘Unifying Concepts in Catalysis’ coordinated by the Techni-
sche Universität Berlin.
>99 (97)
E
E
References and notes
1
>99 (99)
1
.
.
Selected reviews: (a) Holub, N.; Blechert, S. Chem. An Asian J. 2007, 2, 1064–
1
4
082; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44,
490–4527; (c) Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140; (d) Connon, S.;
Blechert, S. Angew. Chem. 2003, 115, 1944–1968; (e) Connon, S.; Blechert, S.
Angew. Chem., Int. Ed. 2003, 42, 1900–1923.
NTs
O
1
5
>99 (99)
83 (80)
2
Selected reviews: (a) Chattopadhyay, S.; Karmakar, S.; Biswas, T.; Majumdar,
K.; Rahaman, H.; Roy, B. Tetrahedron 2007, 63, 3919–3952; (b) Villar, H.; Frings,
M.; Bolm, C. Chem. Soc. Rev. 2007, 36, 55–66; (c) Deiters, A.; Martin, S. Chem.
Rev. 2004, 104, 2199–2238; (d) McReynolds, M.; Dougherty, J.; Hanson, P.
Chem. Rev. 2004, 104, 2239–2258; (e) Meier, M. E. Angew. Chem., Int. Ed. 2000,
O
3
9, 2073–2077.
3.
(a) Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dologonos, G.; Grela,
K. J. Am. Chem. Soc. 2004, 126, 9318–9325; (b) Andreana, P. R.; McLellan, J. S.;
Chen, Y.; Wang, P. G. Org. Lett. 2002, 4, 3875–3878; (c) Fürstner, A.; Ackermann,
L.; Beck, K.; Hori, H.; Koch, D.; Langemann, K.; Liebl, M.; Six, C.; Leitner, W. J.
Am. Chem. Soc. 2001, 123, 9000–9006; (d) Briot, A.; Bujard, M.; Gouverneur, V.;
Nolan, S. P.; Mioskowski, C. Org. Lett. 2000, 2, 1517–1519; (e) Scholl, M.; Trnka,
T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247–2250; (f)
Jafarpour, L.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18,
E
E
3
>99 (98)
5
416–5419; (g) Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310–
6 6 2
Conditions: 0.1 M C F , 80 °C, 1 h, E = CO Et.
a
7318.
Isolated yield not determined due to product volatility.
4
.
(a) Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H.
Org. Lett. 2007, 9, 1339–1342; (b) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J.
M.; Grubbs, R. H.; Schrodi, J. Org. Lett. 2007, 9, 1589–1592.
Gessler, S. ‘Neue trägerfixierte und homogene Katalysatoren für die
Olefinmetathese’ Dissertation, TU Berlin, 2002.
Vehlow, K.; Gessler, S.; Blechert, S. Angew. Chem. 2007, 46, 8228–8231; Vehlow,
K.; Gessler, S.; Blechert, S. Angew. Chem., Int. Ed. 2007, 46, 8082–8085.
Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.;
Dorta, R. J. Am. Chem. Soc. 2008, 130, 6848–6858.
5
6
7
8
.
.
.
.
(a) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K. Chem. Eur. J. 2008, 14,
806–818; (b) Fürstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan, S. P.
J. Org. Chem. 2000, 65, 2204–2207.
9.
Imhof, S.; Randl, S.; Blechert, S. Chem Commun 2001, 1692–1693.
1
0. General procedure for the ring-closing metathesis reactions: The corresponding
substrate and the catalyst were added in a tube under nitrogen atmosphere.
Hexafluorobenzene (0.1 M) was added, and the mixture was stirred at 80 °C.
The conversion progress was monitored by 1H NMR spectroscopy. For isolated
yields: The solution was concentrated, and the product was purified by column
chromatography in EtOAc/hexane.
1
1. (a) Maechling, S.; Zaja, M.; Blechert, S. Adv. Synth. Catal. 2005, 1413–1422; (b)
Zaja, M.; Connon, S.; Dunne, A.; Rivard, M.; Buschmann, N.; Jiricek, J.; Blechert,
S. Tetrahedron 2003, 59, 6545–6558.
12. (a) D’Annibale, A.; Ciaralli, L.; Bassetti, M.; Pasquini, C. J. Org. Chem. 2007, 72,
6
067–6074; (b) Eidman, K. F.; MacDougall, B. S. J. Org. Chem. 2006, 71, 9513–
Figure 4. ORTEP diagram of complex 9.
9516; (c) Mori, K. Tetrahedron 1989, 45, 3233–3298; (d) Bloch, R.; Gilbert, L.
J. Org. Chem. 1987, 52, 4603–4605; (e) Rao, Y. S. Chem. Rev. 1976, 76, 625–
694.
1
3. Synthesis of catalyst 9: Two hundred and forty milligrams of the complex 2
(0.34 mmol) and 33 mg CuCl (0.33 mmol) were dissolved under nitrogen
atmosphere in 20 ml dichloromethane followed by the addition of 160 mg
2-Isopropoxy styrene (0.68 mmol). The reaction mixture was stirred at 45 °C
for 1 h. Catalyst 3 was purified by silica chromatography (100% hexane to 100%
CH Cl ), to afford the product as a bright green solid after removal of the
rate-limiting phosphine dissociation. Such an interaction has
previously been described and discussed as a reason for the
increased efficiency observed for the corresponding complex.
To get more information about the role of hexafluorobenzene a
suspension of 2 in hexafluorobenzene was heated up to 80 °C until
dissolution of the catalyst. The solvent was then immediately
removed under reduced pressure, yielding a solid of light pink
color significantly differing from the color of complex 2. This
substance is stable at room temperature in solid form but unstable
1
8
2
2
solvent, which was recrystallized from hexane/CH
2
Cl
68%); mp > 230 °C, decomposition. H NMR (500 MHz, CDCl
ppm) = 16.32, 16.16 (s, 1H), 8.48–6.48 (m, 16H), 4.68–4.34 (m, 4H), 2.83, 2.75
2
(1:1). Yield: 155 mg
1
(
(
(
3
): (isomers) d
s, 6H), 0.93, 0.88 (d, J3 = 6.0 Hz 6H). C NMR (125 MHz, CDCl
13
3
): (isomers) d
(ppm) = 152.4, 144.8, 144.7, 133.3, 133.2, 131.7, 131.5 (C), 129.5, 129.3, 129.2,
1
7
3
29.1, 129.0, 127.8, 127.7, 127.6, 126.1, 126.0, 122.6, 122.6, 122.1, 112.7, 112.6,
À1
4.9, 74.8 (CH), 53.0, 52.9 (CH
2
), 20.8, 20.7 (CH
3
). IR (ATR):
m
(cm ) = 3470 (w),
in solution. The substance was dissolved in CDCl
3
, and after 10 min
050 (w), 2973 (m), 2926 (m), 2852 (w), 1701 (m), 1589 (m), 1476 (s), 1414 (s),
F NMR showed the presence of hexafluorobenzene, which can only
1375 (m), 1272 (vs), 1255 (vs), 1218 (m), 1113 (s), 936 (m), 814 (m), 780 (s),