G. Kumaraswamy, B. Markondaiah / Tetrahedron Letters 48 (2007) 1707–1709
1709
reomer formed during the S-proline catalyzed aldol
reaction was removed in the subsequent purification of
4a; (b) The diastereo and enantioselectivity of aldol
product 5a was determined on the basis of b-lactone
carboxylic acids 3a and 3b reported in our previous
work.6 The optical rotation of compound 3c, was
similar in magnitude but opposite in sign to that of 3b
References and notes
1. Wang, Y.; Tennyson, R. L.; Romo, D. Heterocycles 2004,
64, 605–658.
2. Pommier, A.; Pons, J. M. Synthesis 1995, 729–744.
3. (a) Paterson, I.; Hulme, A. N. J. Org. Chem. 1995, 60,
3288–3300; (b) Mandal, A. K. Org. Lett. 2002, 4, 2043–
2045; (c) Wu, Y.; Sun, Y. P. J. Org. Chem. 2006, 71, 5748–
5751; (d) Hanessian, S.; Tehim, A.; Chen, P. J. Org. Chem.
1993, 58, 7768–7781; (e) Yadav, J. S.; Vishweshwar Rao,
K.; Sridhar Reddy, M.; Prasad, A. R. Tetrahedron Lett.
2006, 47, 4393–4395.
4. Asai, A.; Hasegawa, A.; Ochiai, K.; Yamashita, Y.;
Mizukami, T. J. Antibiot. 2000, 53, 81–83.
5. (a) Armstrong, A.; Scutt, J. N. Chem. Commun. 2004, 510–
511; (b) Larionov, O. V.; de Meijere, A. Org. Lett. 2004, 6,
2153–2156.
6. Kumaraswamy, G.; Padmaja, M.; Markondaiah, B.;
Nivedita, J.; Sridhar, B.; Uday kiran, M. J. Org. Chem.
2006, 71, 337–340.
7. (a) Pihko, P. M.; Erkkila, A. Tetrahedron Lett. 2003, 44,
7607–7609; (b) Storer, I. R.; MacMillan, D. W. C.
Tetrahedron 2004, 60, 7705–7714; (c) Northup, A. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798–
6799; (d) Zhao, G. L.; Liao, W. W.; Cordova, A.
Tetrahedron Lett. 2006, 47, 4929–4932.
8. Aldehydes containing an a-methine carbon (CHR3) adja-
cent to the carbonyl do not under go homo-dimerization
when exposed to the catalyst as the kinetic inaccessibility
of the a-methine proton and thermodynamic instability of
the corresponding enamine effectively prohibit nucleophile
formation.
9. b-Hydroxyaldehydes such as 5a were reported to undergo
oligomerization, elimination and other decomposition
reactions. For recent documented examples, see: (a)
Chemler, S. R.; Roush, W. R. J. Org. Chem. 2003, 68,
1319–1333; (b) Lautens, M.; Stammers, T. A. Synthesis
2002, 1933–2012.
25
25
ð½aꢀD +13.8 (c 0.05, CHCl3); lit.6 ð½aꢀD ꢁ10.5 (c 1,
CHCl3).
11. For the preparation of dipeptide unit 2, see Ref. 6.
25
12. Selected data: Compound 1c: ½aꢀD ꢁ11.5 (c 0.0125,
CHCl3); 1H NMR (200 MHz, CDCl3) d: 7.27–7.30 (m,
10H), 5.67 (d, J = 8.0 Hz, NH), 5.12 (d, J = 8.0 Hz, 2H),
5.03 (s, 2H), 4.50–4.60 (m, 1H), 4.43–4.49 (m, 1H), 4.42
(d, J = 4.4 Hz, 1H), 3.40–3.50 (m, 1H), 3.20–3.29 (m,
1H), 2.95–3.08 (m, 1H), 1.66–1.82 (m, 4H), 1.36–1.41 (m,
4H), 1.35 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H);
13C NMR (75 MHz) d: 172.3, 171.5, 169.5, 167.9, 156.0,
136.1, 135.0, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 72.8,
67.3, 67.0, 57.4, 51.7, 51.1, 38.4, 29.9, 29.1, 25.1, 19.8,
18.3, 13.4; IR (KBr): 3316, 2933, 1825, 1731, 1652, 1534,
1447, 1238, 1178, 1072, 905, 738, 661. MS (LC): m/z 590
25
[M+Na]+. Compound 4a: ½aꢀD ꢁ28.6 (c 0.025, CHCl3);
1H NMR (300 MHz, CDCl3) d: 4.23 (ddd, J = 2.2, 6.8,
9.0 Hz, 1H), 4.19 (dd, J = 2.2, 3.7 Hz, 1H), 4.08 (dd,
J = 6.8, 8.3 Hz, 1H), 3.87 (dd, J = 6.8, 8.3 Hz, 1H), 3.49
(dd, J = 3.7, 8.3 Hz, 1H), 1.85–1.95 (m, 1H), 1.58–1.70
(m, 1H), 1.41 (s, 3H), 1.37 (s, 3H), 1.23–1.33 (m, 1H),
1.00 (d, J = 6.8 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H); 13C
NMR (75 MHz): d 170.0, 110.2, 74.8, 73.0, 65.0, 57.9,
33.3, 26.7, 25.7, 25.4, 16.5, 10.9; IR (KBr): 2962, 2875,
1828, 1460, 1378, 1214, 1114, 1066, 895; MS (LC): m/z
25
251 [M+Na]+. Compound 11a: ½aꢀD ꢁ38.5 (c 0.05,
CHCl3); 1H NMR (300 MHz, CDCl3) d: 4.33 (dd,
J = 3.9, 8.1 Hz, 1H), 3.68–3.80 (m, 3H), 3.53 (dd,
J = 4.3, 8.3 Hz, 1H), 2.94 (br s, 1H), 2.30 (br s, 1H),
1.89–1.99 (m, 1H), 1.60–1.70 (m, 1H), 1.20–1.33 (m, 1H),
1.05 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); IR
(KBr): 3382, 2963, 1813, 1459, 1293, 1114, 1014, 877. MS
(LC): m/z 211 [M+Na]+.
10. (a) Efforts to estimate the level of diastereoselectivity of
5a were not successful. Presumably, the minor diaste-