5
272
Y. Zhou et al. / Tetrahedron Letters 49 (2008) 5271–5272
afforded bromide 4 in 61% yield. Double deprotonation of 2,4-penta-
dione with LDA (200 mol %) at À78 °C followed by alkylation with
4. (a) Shopotova, L. P.; Shenin, Y. D. Zh. Prikl. Khim. 1993, 66, 1334–1338; (b) See
also: Chem. Abstr. 1994, 120, 158329; (c) Oishi, H.; Sugawa, T.; Okutomi, T.;
Suzuki, K.; Hayashi, T.; Sawada, M.; Ando, K. J. Antibiot. 1970, 23, 105–106.
4
furnished the coupling product 5, which was present in solution
5.
Borrel, M. N.; Pereira, E.; Fiallo, M.; Garnier-Suillerot, A. Eur. J. Biochem. 1994,
223, 125–133.
as a mixture of dione and ketoenol (in a ratio of ca. 1:4). Treatment
B(OMe)13 stereoselectively formed syn-diol
6.
(a) Callewaert, D. M.; Radcliff, G.; Tanouchi, Y.; Shichi, H. Immunopharmacology
of 5 with NaBH and Et
in excellent yield (94%) via two successive reduction steps. The
second reduction proceeded in a highly stereocontrolled manner
because of the complexation effect of Et B(OMe). Exposure of 6
4
2
1988, 16, 25–32; (b) Tanouchi, Y.; Shichi, H. Immunology 1988, 63, 471–475.
6
7.
(a) Wu, Y. K.; Sun, Y. P. Org. Lett. 2006, 8, 2831–2834; (b) Fleming, I.; Ghosh, S.
K. J. Chem. Soc., Perkin Trans. 1 1998, 2733–2747; (c) Lee, J. Y.; Kim, B. H.
Tetrahedron 1996, 52, 571–588; (d) Schmidt, U.; Werner, J. Synthesis 1986, 986–
2
9
5
92; (e) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106,
304–5311; (f) Schmidt, U.; Gombos, J.; Haslinger, E.; Zak, H. Chem. Ber. 1976,
to 5% HCl in methanol at room temperature effected the desired
cyclization to stereospecifically produce the thermodynamically
109, 2628–2644; (g) Gerlach, H.; Oertle, K.; Thalmann, A.; Servi, S. Helv. Chim.
Acta 1975, 58, 2036–2043.
1
1,14
favored product 7,
in which the (E) configuration of the
8
.
.
(a) Fraser, B.; Perlmutter, P. J. Chem. Soc. Perkin Trans. 1 2002, 2896–2899; (b)
Ahmar, M.; Duyck, C.; Fleming, I. J. Chem. Soc., Perkin Trans. 1 1998, 2721–2732;
(c) Solladie, G.; Dominguezt, C. J. Org. Chem. 1994, 59, 3898–3901; (d) Ireland, R.
E.; Vevert, J. P. Can. J. Chem. 1981, 59, 572–583; (e) John, J. F.; Gschwend, H. W. J.
Org. Chem. 1980, 45, 4259–4260.
carbon–carbon double bond allows maximum conjugation. The
generation of 7 presumably involved hydrolysis, hemi-acetal
formation, and dehydration. By three known transformations
7
e
described previously (i.e., stereoselective hydrogenation,
9
Arco, M. J.; Trammell, M. H.; White, J. D. J. Org. Chem. 1976, 41, 2075–
2083.
8
a
Mitsunobu benzoylation, and saponification of both ester group-
8
a
s
), 7 was smoothly converted to (±)-2 in 75% overall yield. The
10. (a) Kim, W. H.; Jung, J. H.; Sung, L. T.; Lim, S. M.; Lee, E. Org. Lett. 2005, 7, 1085–
1087; (b) Fischer, P.; Segovia, A.; Gruner, M.; Metz, P. Angew. Chem., Int. Ed.
8
a,15
structure of (±)-2 was confirmed by spectroscopic analysis.
2005, 44, 6231–6234; (c) Kim, W. H.; Jung, J. H.; Lee, E. J. Org. Chem. 2005, 70,
In summary, racemic nonactic acid was efficiently constructed
in a convergent, stereocontrolled fashion (7 steps, 27%). The pres-
ent synthesis features a stereocontrolled 1,3-dione reduction with
NaBH /Et B(OMe) and an acid-promoted stereospecific cyclization
4 2
in the formation of 7.
8190–8192; (d) Jeong, E. J.; Kang, E. J.; Sung, L. T.; Hong, S. K.; Lee, E. . J. Am.
Chem. Soc. 2002, 124, 14655–14662; (e) Germay, O.; Kumar, N.; Thomas, E. J.
Tetrahedron Lett. 2001, 42, 4969–4974; (f) Lee, E.; Choi, S. J. Org. Lett. 1999, 1,
1127–1128; (g) Meiners, U.; Cramer, E.; Fröhlich, R.; Wibbeling, B.; Metz, P. Eur.
J. Org. Chem. 1998, 2073–2078; (h) Mandville, G.; Girard, C.; Bloch, R.
Tetrahedron 1997, 53, 17079–17088; (i) Metz, P.; Meiners, U.; Cramer, E.;
Fröhlich, R.; Wibbeling, B. Chem. Commun. 1996, 431–432; (j) Bratt, K.;
Garavelas, A.; Perlmutter, P.; Westman, G. J. Org. Chem. 1996, 61, 2109–2117;
Acknowledgement
(
k) Kim, B. H.; Lee, J. Y. Tetrahedron Lett. 1992, 33, 2557–2560.
1
1
1
1. Bartlett, P. A.; Jernstedt, K. K. Tetrahedron Lett. 1980, 21, 1607–1610.
2. Taskinen, E.; Mukkala, V. M. Tetrahedron 1982, 38, 613–616.
3. (a) Hanamoto, T.; Hiyama, T. Tetrahedron Lett. 1988, 29, 6467–6470; (b) Chen,
K. M.; Hardtmann, G. E.; Prasad, K.; Repi cˇ , O.; Shapiro, M. J. Tetrahedron Lett.
1987, 28, 155–158.
The financial support was provided by the grants from NSFC
90713007; 20772141; 20625204; and 20632030) and MOST_863
2006AA09Z405).
(
(
1
4. Compound 7, a pale yellow oil: 1H NMR (300 MHz, CDCl
3
) d 1.23 (d, J = 6.3 Hz,
H), 1.69–1.87 (m, 3H), 1.76 (s, 3H), 2.17–2.28 (m, 1H), 2.49 (s, 1H, OH), 2.81–
.94 (m, 1H), 3.18–3.27 (m, 1H), 3.67 (s, 3H), 3.97–4.08 (m, 1H), 4.45–4.54 (m,
H); 13C NMR (75 MHz, CDCl
) d 11.2, 23.2, 30.3, 30.6, 43.7, 50.8, 66.1, 82.1,
7.2, 169.6, 169.8. ESI-MS 451 (2M+Na), 269 (M+Na+MeOH), 215 (M+H). ESI-
+Na 237.1103; found: 237.1097.
3
2
1
9
References and notes
3
1
.
.
Gerlach, H.; Hutter, R.; Keller-Schlierlein, W.; Seibl, J.; Zahner, H. Helv. Chim.
Acta 1967, 50, 1782–1793.
(a) Takatori, K.; Tanaka, K.; Matsuoka, K.; Morishita, K.; Kajiwara, M. Synlett
18 4
HRMS calcd for C11H O
2
5. Compound (±)-2: 1H NMR (300 MHz, CDCl
) d 1.16 (d, J = 6.9 Hz, 3H), 1.22 (d,
J = 6.6 Hz, 3H), 1.58–1.74 (m, 4H), 1.97–2.11 (m, 2H), 2.46–2.56 (m, 1H), 3.98–
1
3
1
997, 159–160; (b) Corbaz, R.; Ettinger, L.; Gaumann, E.; Keller-Schlierlein, W.;
Kradolfer, F.; Kyburz, E.; Neipp, L.; Prelog, V.; Zahner, H. Helv. Chim. Acta 1955,
8, 1445–1448.
(a) Nefelova, M. V.; Sverdlova, A. N. Antibiot. Med. Biotechnol. 1985, 30, 261–
64; (b) See also: Chem. Abstr. 1985, 102, 201065.
13
4
2
.23 (m, 3H), 5.89 (br s, 2H, CO
8.6, 30.5, 43.1, 45.2, 64.9, 76.8, 80.8, 178.0. ESI-MS 225 (M+Na), 203 (M+H).
+Na 225.1103; found: 225.1097.
2 3
H & OH); C NMR (75 MHz, CDCl ) d 13.4, 22.9,
3
3
.
18 4
ESI-HRMS calcd for C10H O
2