ACS Catalysis
Research Article
(2) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1995, 117, 2675−2676. (b) Ohkuma, T.; Ooka, H.;
Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417−10418.
(c) Noyori, R.; Sandoval, C. A.; Muniz, K.; Ohkuma, T. Philos. Trans.
R. Soc., A 2005, 363, 901−912. (d) Noyori, R.; Yamakawa, M.;
Hashiguchi, S. J. Org. Chem. 2001, 66, 7931−7944. (e) Noyori, R.
Angew. Chem., Int. Ed. 2002, 41, 2008−2022.
to release substrate provides D and the catalytic cycle is closed
following hydride abstraction from isopropyl alcohol in
complex D, liberating acetone. In this catalytic cycle, the cation
plays a key role in increasing activity in two respects: (1)
polarizing the carbonyl group of the ketone through
coordination and (2) orienting the ketone substrate for hydride
transfer.
(3) For selected recent examples, see: (a) Schmeier, T. J.;
Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc.
2011, 133, 9274−9277. (b) Bartoszewicz, A.; Marcos, R.; Sahoo, S.;
Inge, A. K.; Zou, X.; Martin-Matute, B. Chem. - Eur. J. 2012, 18,
14510−14519. (c) Kashiwame, Y.; Kuwata, S.; Ikariya, T. Organo-
metallics 2012, 31, 8444−8455. (d) Yoshinari, A.; Tazawa, A.; Kuwata,
S.; Ikariya, T. Chem. - Asian J. 2012, 7, 1417−1425. (e) Bichler, B.;
Holzhacker, C.; Stoeger, B.; Puchberger, M.; Veiros, L. F.; Kirchner, K.
Organometallics 2013, 32, 4114−4121. (f) Hulley, E. B.; Helm, M. L.;
Bullock, R. M. Chem. Sci. 2014, 5, 4729−4741. (g) Kuwata, S.; Ikariya,
T. Chem. Commun. 2014, 50, 14290−14300. (h) Toda, T.; Kuwata, S.;
Ikariya, T. Chem. - Eur. J. 2014, 20, 9539−9542. (i) Marelius, D. C.;
Darrow, E. H.; Moore, C. E.; Golen, J. A.; Rheingold, A. L.; Grotjahn,
D. B. Chem. - Eur. J. 2015, 21, 10988−10992. (j) Grotjahn, D. B.;
Kragulj, E. J.; Zeinalipour-Yazdi, C. D.; Miranda-Soto, V.; Lev, D. A.;
Cooksy, A. L. J. Am. Chem. Soc. 2008, 130, 10860−10861.
(k) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Angew. Chem., Int. Ed.
2012, 51, 12790−12794.
(4) (a) Hayes, J. M.; Deydier, E.; Ujaque, G.; Lledos, A.; Malacea-
Kabbara, R.; Manoury, E.; Vincendeau, S.; Poli, R. ACS Catal. 2015, 5,
4368−4376. (b) Mikhailine, A. A.; Maishan, M. I.; Lough, A. J.;
Morris, R. H. J. Am. Chem. Soc. 2012, 134, 12266−12280. (c) Zhang,
G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. J. Am. Chem. Soc.
2013, 135, 8668−8681. (d) Lagaditis, P. O.; Sues, P. E.; Lough, A. J.;
Morris, R. H. Dalton Trans. 2015, 44, 12119−12127. (e) Sonnenberg,
J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. J. Am. Chem. Soc. 2012,
134, 5893−5899.
(5) (a) Suna, Y.; Ertem, M. Z.; Wang, W.-H.; Kambayashi, H.;
Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Organometallics
2014, 33, 6519−6530. (b) Wang, W.-H.; Hull, J. F.; Muckerman, J. T.;
Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5, 7923−7926.
(c) Zeng, G.; Sakaki, S.; Fujita, K.-i.; Sano, H.; Yamaguchi, R. ACS
Catal. 2014, 4, 1010−1020. (d) Wang, W.-H.; Muckerman, J. T.;
Fujita, E.; Himeda, Y. ACS Catal. 2013, 3, 856−860.
(6) (a) Noyori, R.; Kitamura, M.; Ohkuma, T. Proc. Natl. Acad. Sci. U.
S. A. 2004, 101, 5356−5362. (b) Phillips, S. D.; Fuentes, J. A.; Clarke,
M. L. Chem. - Eur. J. 2010, 16, 8002−8005. (c) Zhao, B.; Han, Z.;
Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744−4788.
CONCLUSIONS
■
In conclusion, we have demonstrated remarkable differences in
selectivity and activity for transfer hydrogenation that are
imparted by pendent OH groups. Deprotonation of the OH
groups modulates the electronics at the metal center, providing
a more electron rich ruthenium center under basic conditions.
The location of the resulting alkoxide groups serves to orient
the ketone substrate through ion pairing with alkali metals. This
ion pairing facilitates chemoselective transfer hydrogenation of
ketones in the presence of olefins. We note that the presently
observed role of cations may well be operative in other 2-
hydroxypyridine catalysts that function under highly basic
conditions in the presence of high concentrations of alkali
metals.11j,m,36 The results here illustrate that a simple ligand
modification (installation of OH groups in the 2-position of a
pyridine ring) imparts dramatic changes to catalysis. They turn
on catalysis through electronic perturbations at the metal site
and, importantly, can change the mechanism of catalysis
(switching from inner-sphere to outer-sphere pathways). Thus,
we term the modification as a general alkoxide effect and note
that the design principles described herein should be valuable
tools when constructing future ligand ensembles for catalysis.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthetic and experimental procedures, NMR spectra,
and representative kinetic data (PDF)
Crystallographic data (CIF)
Crystallographic data (CIF)
Crystallographic data (CIF)
Crystallographic data (CIF)
Crystallographic data (CIF)
(7) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am. Chem.
Soc. 2003, 125, 13490−13503.
(8) Hartmann, R.; Chen, P. Angew. Chem., Int. Ed. 2001, 40, 3581−
3585.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(9) (a) Hamilton, R. J.; Leong, C. G.; Bigam, G.; Miskolzie, M.;
Bergens, S. H. J. Am. Chem. Soc. 2005, 127, 4152−4153. (b) Hamilton,
R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700−13701.
(c) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130,
11979−11987. (d) Takebayashi, S.; Dabral, N.; Miskolzie, M.;
Bergens, S. H. J. Am. Chem. Soc. 2011, 133, 9666−9669. (e) John, J.
M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am.
Chem. Soc. 2013, 135, 8578−8584.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the University of Michigan
Department of Chemistry, an NSF-CAREER grant (CHE-
1350877), an NSF-GRFP grant (C.M.M.), the UM Rackham
Graduate School (C.M.M.), and the NSF (CHE-0840456) for
X-ray instrumentation. N.K.S. is a Dow Corning Assistant
Professor and Alfred P. Sloan Research Fellow. We thank Dr
Jeff W. Kampf for X-ray assistance and Boulder Scientific Co.
for a generous donation of LiB(C6F5)4.
(10) Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J. Am.
Chem. Soc. 2014, 136, 3505−3521.
(11) (a) Moore, C. M.; Szymczak, N. K. Chem. Commun. 2013, 49,
400−402. (b) Tutusaus, O.; Ni, C.; Szymczak, N. K. J. Am. Chem. Soc.
2013, 135, 3403−3406. (c) Moore, C. M.; Szymczak, N. K. Chem.
Commun. 2015, 51, 5490−5492. (d) Wang, W.-H.; Muckerman, J. T.;
Fujita, E.; Himeda, Y. New J. Chem. 2013, 37, 1860−1866. (e) Fujita,
K.-i.; Ito, W.; Yamaguchi, R. ChemCatChem 2014, 6, 109−112.
(f) Fujita, K.-i.; Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. J. Am. Chem.
Soc. 2014, 136, 4829−4832. (g) Wang, W.-H.; Himeda, Y.;
Muckerman, J. T.; Fujita, E. Adv. Inorg. Chem. 2014, 66, 189−222.
(h) Nieto, I.; Livings, M. S.; Sacci, J. B.; Reuther, L. E.; Zeller, M.;
REFERENCES
■
(1) (a) Crabtree, R. H. New J. Chem. 2011, 35, 18−23.
(b) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588−602.
1989
ACS Catal. 2016, 6, 1981−1990