10.1002/anie.202108396
Angewandte Chemie International Edition
RESEARCH ARTICLE
samples (Figures S38–41). In the catalytic reactions, the activity
of H-3DOM-Co/NC-X increased with the enhancement of
macropore and void sizes, which may be attributed to the
improved substrate diffusion and increased number of available
active sites. Among the synthesized H-3DOM-Co/NC-X materials,
H-3DOM-Co/NC-600 showed the highest activity, achieving a
97.8% yield of CPL in 8 h with a turnover frequency of 1.8 h-1,
making it one of the most active non-noble-metal catalysts
reported thus far for this hydrogenation reaction (Tables S2 and
S4).
The hot filtration experiment demonstrated no further
conversion of FFA after catalyst removal from the system and the
Co content of the reaction mixture measured by AAS was below
the detecting limit (< 5 ppb), suggesting the heterogeneous nature
of the catalytic system (Figure S42). Furthermore, H-3DOM-
Co/NC could be reused at least seven times without significant
loss of activity (Figure 4e). The CPL yields were also similar at an
incomplete reaction time (4 h) in the recycling experiments (purple
stars suit in Figure 4e), revealing the high durability of this catalyst.
The XRD patterns of the used H-3DOM-Co/NC matched well with
those of the fresh one with almost unchanged intensity (Figure
S43). The HAADF-STEM images also confirmed that the 3D-
ordered macropores and hollow walls of the reused catalyst were
well preserved and no obvious aggregation of Co NPs was
observed (Figure S44). These results demonstrate that the
hierarchically porous N-doped carbon support can protect the
aggregation and leaching of Co NPs during the reaction, thus
allowing the active H-3DOM-Co/NC catalyst to show high stability
and reusability under the investigated conditions.
Dongguan City (2020607263005), and the Natural Science
Foundation of Guangdong Province (2016A050502004,
2017A030312005).
Competing interests
The authors declare no competing interest.
Keywords: hierarchical pore • hollow structure • heterogeneous
catalysis • metal-organic frameworks • selective hydrogenation
[1]
a) R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie,
Chem. Soc. Rev. 2009, 38, 481–494; b) A. Dhakshinamoorthy, H. Garcia,
Chem. Soc. Rev. 2012, 41, 5262–5284; c) X. Zhang, H. Liu, Y. Shi, J.
Han, Z. Yang, Y. Zhang, C. Long, J. Guo, Y. Zhu, X. Qiu, G. Xue, L.
Zhang, B. Zhang, L. Chang, Z. Tang, Matter 2020, 3, 558–570.
a) C.-X. Zhao, B.-Q. Li, J.-N. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2021,
60, 4448–4463; Angew. Chem. 2021, 133, 4496–4512; b) C. Tang, L.
Chen, H. Li, L. Li, Y. Jiao, Y. Zheng, H. Xu, K. Davey, S.-Z. Qiao, J. Am.
Chem. Soc. 2021, 143, 7819–7827; c) R. V. Jagadeesh, K. Murugesan,
A. S. Alshammari, H. Neumann, M.-M. Pohl, J. Radnik, M. Beller,
Science 2017, 358, 326–332; d) S. Wang, J. Wang, M. Zhu, X. Bao, B.
Xiao, D. Su, H. Li, Y. Wang, J. Am. Chem. Soc. 2015, 137, 15753–15759;
e) L. Chen, L. Zhang, Z. Chen, H. Liu, R. Luque, Y. Li, Chem. Sci. 2016,
7, 6015–6020.
[2]
[3]
[4]
a) J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y.
Han, M. Jaroniec, Y. Zhu, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2021,
143, 5201–5211; b) W. Zhu, L. Zhang, P. Yang, C. Hu, Z. Luo, X. Chang,
Z.-J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2018, 57, 11544–11548;
Angew. Chem. 2018, 130, 11718–11722; c) J. Nai, X. W. Lou, Adv. Mater.
2019, 31, 1706825; (d) H.-F. Wang, L. Chen, M. Wang, Z. Liu, Q. Xu,
Nano Lett. 2021, 21, 3640–3648.
a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013,
341, 1230444; b) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int.
Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430; c) B.
Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28,
8819–8860; d) S. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 2017, 3,
17075; e) K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887–
5903; f) H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc.
Rev. 2020, 49, 1414–1448; g) L. Chen, R. Luque, Y. Li, Chem. Soc. Rev.,
2017, 46, 4614–4630.
Conclusion
In summary, we have successfully fabricated 3D-ordered
macroporous H-3DOM-Co/NC with hollow walls, through epitaxial
growth of ZIF-67 nanolayers on SOM-ZIF-8 followed by a simple
thermal transformation process. The 3D-ordered macroporous
carbon framework can effectively promote long-range mass
transfer, and the hollow walls can facilitate the local accessibility
of active sites, which can cooperatively maximize the exposure of
embedded Co NPs to reaction substrates, thus boosting the
catalytic activity in the hydrogenation of FFA. Further tuning the
sizes of macropores in the skeleton and hollow space in the walls
demonstrated the positive correlation between macropore/void
sizes and mass transfer efficiency/accessibility of active sites.
Moreover, the porous N-doped carbon support could well protect
the embedded Co NPs from aggregation during the catalytic
reaction to achieve good stability and reusability in the reaction.
This study might provide insights into the rational design and
synthesis of hierarchical and hollow structures with enhanced
activity and stability for various applications.
[5]
a) H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.
Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854–11857; b) W. Zhong,
H. Liu, C. Bai, S. Liao, Y. Li, ACS Catal. 2015, 5, 1850–1856; c) X. Wang,
Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang,
W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, Angew. Chem. Int. Ed.
2018, 57, 1944–1948; Angew. Chem. 2018, 130, 1962–1966; d) X. F. Lu,
L. Yu, J. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1900699; e) Z. Qi, Y.
Pei, T. W. Goh, Z. Wang, X. Li, M. Lowe, R. V. Maligal-Ganesh, W.
Huang, Nano Res. 2018, 11, 3469-3479.
[6]
a) C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu,
J. Li, Y. Yamauchi, Chem 2019, 6, 19–40; b) A. I. Douka, Y. Xu, H. Yang,
S. Zaman, Y. Yan, H. Liu, M. A. Salam, B. Y. Xia, Adv. Mater. 2020, 32,
2002170; c) L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N.
Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2016, 28,
1668–1674; d) Y. Qian, Q. Liu, E. Sarnello, C. Tang, M. Chng, J. Shui, T.
Li, S. J. Pennycook, M. Han, D. Zhao, ACS Mater. Lett. 2019, 1, 37–43;
e) C. Liu, X. Huang, J. Wang, H. Song, Y. Yang, Y. Liu, J. Li, L. Wang,
C. Yu, Adv. Funct. Mater. 2018, 28, 1705253; f) J. Niu, J. Albero, P.
Atienzar, H. García, Adv. Funct. Mater. 2020, 30, 1908984.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21825802, 22136003, 22108083), the
Fundamental Research Funds for the Central Universities
(2019PY11), Introduced Innovative R&D Team Leadership of
[7]
[8]
K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long,
R. Luque, Y. Li, B. Chen, Science 2018, 359, 206–210.
a) M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang,
Angew. Chem. Int. Ed. 2020, 59, 2688–2694; Angew. Chem. 2020, 132,
2710–2716; b) Z. Zhu, H. Yin, Y. Wang, C.-H. Chuang, L. Xing, M. Dong,
5
This article is protected by copyright. All rights reserved.