Organic Letters
Letter
although the reaction with cyclohexanol did give a product, 16,
in 77% yield. Hence the reaction appears to be specific for
certain classes of substrate, with a sharp dependence on the
steric and electronic nature of the substituents on the reagents.
Traces of an imine intermediate were detected in the
reaction mixtures at high conversion, and high levels of imine
were observed at lower conversions (see Supporting
Information). This supports the proposed “hydrogen borrow-
ing” mechanism outlined in the introduction to this paper.
Feringa has likewise found support for this mechanism in his
ACKNOWLEDGMENTS
■
We thank the EPSRC and Astrazeneca Ltd. for generous
funding (to A.J.R.) via the EPSRC Industrial CASE
Programme.
REFERENCES
■
(
1) (a) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai,
N. J. Chem. Soc., Chem. Commun. 1981, 611−612. (b) Watanabe, Y.;
Tsuji, Y.; Ohsugi, Y. Tetrahedron Lett. 1981, 22, 2667−2670.
(c) Murahashi, S.-I.; Kondo, K.; Hakata, T. Tetrahedron Lett. 1982,
9
work using a closely related catalyst. It is likely that the catalyst
2
(
(
3, 229−232.
2) (a) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
b) Bahn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller,
is first converted to the unsaturated species 17 through reaction
6
,12
with the trimethylamine oxide,
the hydride 18 via reaction with the alcohol as shown in Figure
. Although catalyst 1 is known to be capable of dehydrogen-
and this subsequently forms
̈
M. ChemCatChem 2011, 3, 1853−1864. (c) Guillena, G.; Ramon, D.
J.; Yus, M. Chem. Rev. 2010, 110, 1611−1641. (d) Watson, A. J. A.;
Williams, J. M. J. Science 2010, 329, 635−636. (e) Nixon, T. D.;
Whittlesey, M. K.; Williams, J. M. Dalton Trans. 2009, 753−762.
5
(
f) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth.
Catal. 2007, 349, 1555−1575.
(
3) (a) Enyong, A. B.; Moasser, B. J. Org. Chem. 2014, 79, 7553−
563. (b) Ma, W. M. J.; James, T. D.; Williams, J. M. J. Org. Lett. 2013,
5, 4850−4853. (c) Imm, S.; Bahn, S.; Zhang, M.; Neubert, L.;
7
1
̈
Figure 5. Activated and hydride derivatives of 1 and likely mechanism
Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Angew.
Chem., Int. Ed. 2011, 50, 7599−7603. (d) Berliner, M. A.; Dubant, P.
A.; Makowski, T.; Ng, K.; Sitter, B.; Wager, C.; Zhang, Y. Org. Process
Res. Dev. 2011, 15, 1052−1062. (e) Bahn, S.; Imm, S.; Mevius, K.;
Neubert, L.; Tillack, A.; Williams, J. M.; Beller, M. Chem.Eur. J.
of hydride transfer.
ation of alcohols and of ketone reduction through intermediates
1
7 and 18, the current application to “hydrogen borrowing”
2
010, 16, 3590−3593. (f) Kawahara, R.; Fujita, K.; Yamaguchi, R. J.
reveals a valuable new property of this class of catalyst.
9
Am. Chem. Soc. 2010, 132, 15108−15111. (g) Saidi, O.; Blacker, A. J.;
Mohamed, M.; Marsden, S. P.; Williams, J. M. J. Chem. Commun. 2010,
Some comparison with the work of Feringa et al. is valuable
at this point. Although our study was less comprehensive, we
also observed the reluctance of the reaction to dialkylate the
amine starting material, even when excess alcohol was used.
While our experience was that benzylamine was not a suitable
amine for coupling using 1 under our conditions, the catalyst
used by Feringa et al., i.e. 4, worked well with benzylic amines
under their conditions. In our work, we focused on
optimizations of reactions of aniline with benzyl alcohols, and
were therefore able to form several derivatives in good yields.
Our conditions appear to translate well in early tests to close
reactions of other electron-rich anilines; for example the
preparation of 13 in 87% yield. Further variation of the aniline
structure however was not tolerated as well under our
conditions as it was by Feringa et al.’s, although in both
systems the yields of the ortho-substituted anilines were found
to be lower than those for the para-substituted ones, possibly
due to steric hindrance.
4
6, 1541−1543. (h) Haniti, M.; Hamid, S. A.; Allen, C. L.; Lamb, G.
W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J.
J. Am. Chem. Soc. 2009, 131, 1766−1774. (i) Fujita, K.-I.; Enoki, Y.;
Yamaguchi, R. Tetrahedron 2008, 64, 1943−1954. (j) Fujita, K.-I.;
Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525−3528.
(4) (a) Gopalaiah, K. Chem. Rev. 2013, 113, 3248−3296. (b) Darwish,
M.; Wills, M. Catal. Sci. Technol. 2012, 2, 243−255. (c) Enthaler, S.;
Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317−3321.
(d) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104,
6
(
217−6254.
5) (a) Quintard, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2014, 53,
4
044−4055. (b) Lu, X.; Zhang, Y. W.; Turner, N.; Zhang, M. T.; Li, T.
L. Org. Biomol. Chem. 2014, 12, 4361−4371. (c) Quintard, A.;
Constantieux, T.; Rodriguez, J. Angew. Chem., Int. Ed. 2013, 52,
1
2883−12887. (d) Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.;
Gaillard, S.; Poater, A.; Cavallo, L.; Lohier, J.; Renaud, J. Chem.Eur.
J. 2013, 19, 17881−17890. (e) Fleischer, S.; Zhou, S.; Junge, K.; Beller,
M. Angew. Chem., Int. Ed. 2013, 52, 5120−5124. (f) Pagnoux-
Ozherelyeva, A.; Pannetier, N.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-
L. Angew. Chem., Int. Ed. 2012, 51, 4976−4980. (g) Berkessel, A.;
Reichau, S.; Hoh, A.; Leconte, N.; Neudorfl, J. Organometallics 2011,
We believe that these results represent a valuable
contribution to the area of C−N bond formation using
sustainable metals and may find further use in the synthetic
community. Further work is underway to establish the scope
and applications of the catalyst system we have reported, as well
as improvements to the catalyst structure and activity.
3
0, 3880−3887. (h) Coleman, M. G.; Brown, A. N.; Bolton, B. A.;
Guan, H. Adv. Synth. Catal. 2010, 352, 967−970. (i) Zhang, H. H.;
Chen, D. Z.; Zhang, Y. H.; Zhang, G. Q.; Liu, J. B. Dalton Transactions
2
2
010, 39, 1972−1978. (j) Moyer, S. A.; Funk, T. W. Tetrahedron Lett.
010, 51, 5430−5433. (k) Casey, C. P.; Guan, H. J. Am. Chem. Soc.
ASSOCIATED CONTENT
Supporting Information
■
2009, 131, 2499−2507. (l) Thorson, M. K.; Klinkel, K. L.; Wang, J.;
Williams, T. J. Eur. J. Inorg. Chem. 2009, 295−302. (m) Casey, C. P.;
Guan, H. J. Am. Chem. Soc. 2007, 129, 5816−5817. (n) Bullock, R. M.
Angew. Chem., Int. Ed. 2007, 46, 7360−7363. (o) Pearson, A. J.;
Shively, R. J., Jr.; Dubbert, R. A. Organometallics 1992, 11, 4096−4104.
*
S
(
6) Johnson, T. C.; Clarkson, G. J.; Wills, M. Organometallics 2011,
AUTHOR INFORMATION
■
30, 1859−1868.
(7) Hopewell, J. P.; Martins, J. E. D.; Johnson, T. C.; Godfrey, J.;
Wills, M. Org. Biomol. Chem. 2012, 10, 134−145.
(
8) (a) The use of a heterogeneous iron catalyst has been reported:
Notes
́
Martinex, R.; Ramon, D. J.; Yus, M. Org. Biolmol. Chem. 2009, 7,
2176−2181. (b) A catalytic method not proceeding through a
The authors declare no competing financial interest.
C
Org. Lett. XXXX, XXX, XXX−XXX