Organic Letters
Letter
of hydrogenated and nonhydrogenated enantiomers was
reacted with either D-FDLA or L-FDLA, following the advanced
resolved into four distinct peaks by LC−MS (S18). Hydrolyzed
Present Address
A.M.F.) Department of Chemistry, University of Hawai’i at
Manoa, Honolulu, HI 96822.
(
Notes
1
was reacted with L-FDLA, and the conjugated Amha coeluted
The authors declare no competing financial interest.
as a single peak with the major peak of the L-FDLA Amha
standard, indicating 1 contains only (2R,3R)-Amha residues
ACKNOWLEDGMENTS
■
(S18). In addition, we used advanced Marfey’s technique to
We acknowledge funding from the Fogarty International
Center (FIC) International Research Scientist Development
Award (IRSDA) to M.J.B. (K01 TW008002) and FIC
International Cooperative Biodiversity Group (ICBG) (U01
TW006634) to W.H.G.
synthesize D/L-FDAA Amha conjugates, providing further
evidence of the Amha stereochemistry. Hydrolyzed 1
conjugated with L-FDAA coeluted with the major peak of the
L-FDAA Amha, confirming the presence of only (2R,3R)-Amha
in medusamide A (1).
One of the more intriguing aspects of medusamide A’s
structure is the presence of four identical and adjacent Amha
residues. To the best of our knowledge, multiple adjacent β-
amino acids have not been previously observed in any
cyanobacterial or other marine natural product. Moreover,
only a very few marine natural products possess multiple β-
amino acids (dihydrocyclotheonamide A, cyclocinamide A,
REFERENCES
■
(
(
1) Gerwick, W. H.; Moore, B. S. Chem. Biol. 2012, 19, 85−98.
2) Fattorusso, E.; Taglialatela-Scafati, O. Mar. Drugs 2009, 7, 130−
1
52.
(
1
3) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. Chem. Rev. 2009,
09, 3012−3043.
(4) Daly, J. W. J. Nat. Prod. 2004, 67, 1211−1215.
17,18
theonellamides F, B, C, and onchidin),
and none have
(5) Jones, A. C.; Monroe, E. A.; Eisman, E. B.; Gerwick, L.; Sherman,
D. H.; Gerwick, W. H. Nat. Prod. Rep. 2010, 27, 1048−1065.
6) Mahmud, T.; Flatt, P. M.; Wu, X. J. Nat. Prod. 2007, 70, 1384−
391.
7) Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.;
Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2007, 24, 31−86.
8) Choi, J. Y.; Plummer, M. S.; Starr, J.; Desbonnet, C. R.; Soutter,
contiguous β-amino acids. This suggests involvement of a
unique biosynthetic pathway to account for such an unusual
structural motif as in medusamide A (1).
The known biosynthetic pathways for cyanobacterial
metabolites containing β-amino acids, such as microcystin
(
1
(
(
[
contains a 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-
decadienoic acid (Adda) residue] and nostophycin [contains a
-amino-2,5-dihydroxy-8-phenyloctanoic acid (Ahoa) residue],
H.; Chang, J.; Miller, J. R.; Dillman, K.; Miller, A. a; Roush, W. R. J.
Med. Chem. 2012, 55, 852−870.
3
(9) Chang, Z.; Flatt, P.; Gerwick, W. H.; Nguyen, V.-A.; Willis, C. L.;
Sherman, D. H. Gene 2002, 296, 235−247.
involve the formation of β-amino acids from the pathway-
initiating polyketide structural unit. Specifically, a β-ketocarbox-
ylate is transaminated by a PLP-dependent aminotransferase to
form the β-amino function. Following a series of NRPS-
mediated incorporations of amino acids, the β-amino group
nucleophile is employed in the macrocyclization event and
(10) Horgen, F. D.; Yoshida, W. Y.; Scheuer, P. J. J. Nat. Prod. 2000,
6
(
3, 461−467.
11) Kimura, J.; Takada, Y.; Inayoshi, T.; Nakao, Y.; Goetz, G.;
Yoshida, W. Y.; Scheuer, P. J. J. Org. Chem. 2002, 67, 1760−1767.
12) Luesch, H.; Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul,
(
V. J. J. Nat. Prod. 2002, 65, 996−1000.
(13) Tan, L. T.; Sitachitta, N.; Gerwick, W. H. J. Nat. Prod. 2003, 66,
764−771.
1
9−21
completes the biosynthetic pathway.
However, the
microcystin/nostophycin pathway for forming β-amino acids
is inconsistent with the structure of 1, as this would require
multiple separate starting points or an iterative use of an NRPS
(14) Williams, P. G.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2003, 66,
1
356−1363.
22
23,24
(15) Gunasekera, S. P.; Ritson-Williams, R.; Paul, V. J. J. Nat. Prod.
module (as found in fungi and bacteria
), and implies
2
(
008, 71, 2060−2063.
16) Fujii, K.; Ikai, Y.; Mayumi, T.; Oka, H.; Suzuki, M.; Harada, K.
Anal. Chem. 1997, 69, 3346−3352.
17) Clark, W. D.; Corbett, T.; Valeriote, F.; Crews, P. J. Am. Chem.
unprecedented reactions to interconnect these residues. Hence,
it appears more likely that multiple Amha units are formed
separately from the assembly line, and then incorporated as
activated amino acids through an entirely NRPS-type
mechanism, such as observed for the incorporation of β-
(
Soc. 1997, 119, 9285−9286.
(18) Romanova, N. N.; Tallo, T. G.; Rybalko, I. I.; Zyk, N. V.;
Shvyadas, V. K. Chem. Heterocycl. Compd. 2011, 47, 395−417.
25
alanine into jamaicamide A. More research is needed to clarify
the novel biosynthetic assembly illustrated by medusamide A
(
̈ ̈
19) Tillett, D.; Dittmann, E.; Erhard, M.; von Dohren, H.; Borner,
T.; Neilan, B. A. Chem. Biol. 2000, 7, 753−764.
(1).
(20) Fewer, D. P.; Osterholm, J.; Rouhiainen, L.; Jokela, J.; Wahlsten,
M.; Sivonen, K. Appl. Environ. Microbiol. 2011, 77, 8034−8040.
ASSOCIATED CONTENT
Supporting Information
(21) Kudo, F.; Miyanaga, A.; Eguchi, T. Nat. Prod. Rep. 2014, 31,
■
1
056−1073.
22) Boettger, D.; Hertweck, C. ChemBioChem 2013, 14, 28−42.
(23) Blodgett, J. A.; Oh, D. C.; Cao, S.; Currie, C. R.; Kolter, R.;
Clardy, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 11692−11697.
24) Gaitatzis, N.; Silakowski, B.; Kunze, B.; Nordsiek, G.; Blocker,
H.; Hofle, G.; Mu
*
S
(
(
̈
̈
̈
ller, R. J. Biol. Chem. 2002, 277, 13082−13090.
Full experimental details and spectral data (PDF)
(25) Edwards, D. J.; Marquez, B. L.; Nogle, L. M.; McPhail, K.;
Goeger, D. E.; Roberts, M. A.; Gerwick, W. H. Chem. Biol. 2004, 11,
8
17−833.
AUTHOR INFORMATION
■
Corresponding Author
D
Org. Lett. XXXX, XXX, XXX−XXX