Journal of the American Chemical Society
1 these weakly coordinating organometallic anions are
Page 6 of 8
REFERENCES
1
2
3
4
5
6
7
8
excellent catalysts for such reactions. In some cases, (entries 18,
21, 23-24 and 26-27) the catalysts turnover between 68,000-
93,000 times, which is very close to the activity observed in our
phosphine based system. In all cases the polyhalogenated
catalysts 8Br12[Li+] and 8I12[Li+] outperform the hydridic
version 3[Li+]. This is likely due to the enhanced -acidity at
Au+, that can be expected by attaching 12 halogens to the
carboranyl NHC ligand. Likewise, 8Br12[Li+] outperforms
8I12[Li+] in all cases, save for entry 17, which can be
rationalized by the greater electronegativity of Br compared to
I.
(1)
Riddlestone, I. M.; Kraft, A.; Schaefer, J.; Krossing, I.,
Taming the Cationic Beast: Novel Developments in the Synthesis
and Application of Weakly Coordinating Anions. Angew. Chem.
Int. Ed. 2018, 57, 13982-14024.
(2)
When Triflates Fail. Acc. Chem. Res. 2009, 43, 121-128.
(3) Wu, Q.; Irran, E.; Müller, R.; Kaupp, M.; Klare, H. F.
Reed, C. A., H+, CH3 , and R3Si+ Carborane Reagents:
+
T.; Oestreich, M., Characterization of hydrogen-substituted
silylium ions in the condensed phase. Science 2019, 365, 168-172.
(4)
Daltons Trans. 2010, 39, 9176-9184.
(5)
9
Klare, H. F. T.; Oestreich, M., Silylium ions in catalysis.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Popov, S.; Shao, B.; Bagdasarian, A. L.; Benton, T. R.;
Zou, L.; Yang, Z.; Houk, K. N.; Nelson, H. M., Teaching an old
carbocation new tricks: Intermolecular C–H insertion reactions of
vinyl cations. Science 2018, 361, 381-387.
CONCLUSIONS
The study above introduces a new paradigm in molecular
design, specifically, using electrostatic interactions to create
complex functional polyatomic ion pairs. Furthermore, we
show that organometallic WCAs can be robust with respect to
chemical decomposition, and at the same time be highly active
catalysts. This strategy has allowed for the isolation of
heterobimetallic ion pairs of Au-/Ag+, Au-/Ir+ and hybrid
(6)
Shao, B.; Bagdasarian, A. L.; Popov, S.; Nelson, H. M.,
Arylation of hydrocarbons enabled by organosilicon reagents and
weakly coordinating anions. Science 2017, 355, 1403-1407.
(7)
Khandelwal,
M.;
Wehmschulte
Rudolf,
J.,
Deoxygenative Reduction of Carbon Dioxide to Methane, Toluene,
and Diphenylmethane with [Et2Al]+ as Catalyst. Angew. Chem. Int.
Ed. 2012, 51, 7323-7326.
organometallic/main group ion pairs Au-/ (CPh3 or SiEt3 ).
These species are intriguing and will likely find applications as
reagents for halide/hydride/alkide abstractions to make various
other ion pairs and/or as platforms for tandem or cooperative
small molecule activation and catalysis.
+
+
(8)
Douvris, C.; Ozerov, O. V., Hydrodefluorination of
Perfluoroalkyl Groups Using Silylium-Carborane Catalysts.
Science 2008, 321, 1188-1190.
(9)
Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser,
J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V., Nonclassical
Applications of closo-Carborane Anions: From Main Group
Chemistry and Catalysis to Energy Storage. Chem. Rev. 2019, 119,
8262-8290.
ASSOCIATED CONTENT
Supporting Information
(10)
Douvris, C.; Michl, J., Update 1 of: Chemistry of the
The Supporting Information is available free of charge on the
ACS Publications website. Contents: Synthetic procedures,
spectroscopic data (NMR, IR, X-ray crystallographic, etc).
Carba-closo-dodecaborate(−) Anion, CB11H12–. Chem. Rev. 2013,
113, PR179-PR233.
(11)
Fisher, S. P.; Tomich, A.; Guo, J.; Lavallo, V., Teaching
an Old Dog New Tricks: New Directions in Fundamental and
Applied closo-Carborane Anion Chemistry. Chem. Commun. 2019.
AUTHOR INFORMATION
(12)
Estrada, J.; Lugo, C. A.; McArthur, S. G.; Lavallo, V.,
Inductive effects of 10 and 12-vertex closo-carborane anions:
cluster size and charge make a difference. Chem. Commun. 2016,
52, 1824-1826.
Corresponding Author
(13)
Chan, A. L.; Estrada, J.; Kefalidis, C. E.; Lavallo, V.,
Notes
Changing the Charge: Electrostatic Effects in Pd-Catalyzed Cross-
Coupling. Organometallics 2016, 35, 3257-3260.
The authors declare no competing financial interest.
(14)
Lavallo, V.; Wright, J. H.; Tham, F. S.; Quinlivan, S.,
Perhalogenated Carba-closo-dodecaborate Anions as Ligand
Substituents: Applications in Gold Catalysis. Angew. Chem. Int.
Ed. 2013, 52, 3172-3176.
ORCID
Steven P. Fisher: 0000-0002-2519-1873
Gregorio Guisado-Barrios: 0000-0002-0154-9682
Arnold L. Rheingold: 0000-0003-4472-8127
Vincent Lavallo: 0000-0001-8945-3038
(15)
El-Hellani, A.; Kefalidis, C. E.; Tham, F. S.; Maron, L.;
Lavallo, V., Structure and Bonding of a Zwitterionic Iridium
Complex Supported by a Phosphine with the Parent Carba-closo-
dodecaborate CB11H11– Ligand Substituent. Organometallics 2013.
ACKNOWLEDGMENT
(16)
Jess, E.; Vincent, L., Fusing Dicarbollide Ions with
The authors work like to thank the National Science Foundation
(CHE-1455348) for their financial support. G. G.‐B gratefully
acknowledges MINECO for a “José Castillejo Fellowship”
(CAS16/00128) and MICIU/AEI/FEDER “Una manera de
hacer Europa” ( RTI2018-098903-J-I00 ) for financial support..
N‐Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2017, 56, 9906-
9909.
(17)
Fisher, S. P.; El-Hellani, A.; Tham, F. S.; Lavallo, V.,
Anionic and zwitterionic carboranyl N-heterocyclic carbene Au(I)
complexes. Daltons Trans. 2016, 45, 9762-9765.
(18)
Asay, M. J.; Fisher, S. P.; Lee, S. E.; Tham, F. S.;
Borchardt, D.; Lavallo, V., Synthesis of unsymmetrical N-
carboranyl NHCs: directing effect of the carborane anion. Chem.
Commun. 2015, 51, 5359-5362.
ABBREVIATIONS
WCA, Weakly Coordinating Anion; NHC, N-Heterocyclic
Carbene; TON, Turnover number.
(19)
El-Hellani, A.; Lavallo, V., Fusing N-Heterocyclic
Carbenes with Carborane Anions. Angew. Chem. Int. Ed. 2014, 53,
4489-4493.
ACS Paragon Plus Environment