Organometallics
Article
free energy of activation ΔG⧧ of catalysts 6a−d does not
significantly deviate from that of 1. Although catalysts 6a−d do
not display improved performances in benchmark reactions
compared to original catalysts, they show greatly improved
chemoselectivity in alternating copolymerization of cyclooctene
and norbornene as well as in ethenolysis of ethyl oleate. In
particular, 6a achieves 97% chemoselectivity in alternating
copolymerization, while 6b−d display a remarkably high
selectivity (80−90%) for terminal olefins in ethenolysis of
ethyl oleate by avoiding the competing homodimerization of
primary terminal olefins. Catalyst 6c gave 90% selectivity for
the kinetic over the thermodynamic ethenolysis products in
69% yield, with a TON of 6860. This enhanced selectivity
stems from the electronically unsymmetrical nature of the N-
trifluoromethyl NHCs, as the selectivity is substantially
decreased when N−CF3 is replaced with a sterically equivalent
N−iPr group. We therefore propose that the electronic bias
imposed on the NHC ligand by the strongly electron
withdrawing CF3 group and/or a Ru−F interaction is crucial
for achieving high selectivity in the sequence-selective ROMP
and ethenolysis reactions. It shows that one should be careful in
discarding poor catalysts based on benchmark reactions and
that it is essential (at this stage) to evaluate catalysts in a
broader range of reactions. These encouraging results suggest
that improved chemoselective catalysts can be designed, and we
are currently exploring this field.
(3) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1996, 118, 100−110. (b) Schwab, P.; France, M. B.; Ziller, J. W.;
Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039−2041.
(4) (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F.
Nature 2014, 510, 485−496. (b) Nelson, D. J.; Nolan, S. P. Chem. Soc.
Rev. 2013, 42, 6723−6753.
(5) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953−956. (b) Huang, J.; Stevens, E. D.; Nolan, S. P.;
Petersen, J. L. J. Am. Chem. Soc. 1999, 121, 2674−2678. (c) Scholl, M.;
Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40,
2247−2250. (d) Ackermann, L.; Furstner, A.; Weskamp, T.; Kohl, F.
̈
J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40, 4787−4790.
(6) (a) Mangold, S. L.; Grubbs, R. H. Chem. Sci. 2015, 6, 4561−4569.
(b) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A.
H. Nature 2011, 471, 461−466. (c) McReynolds, M. D.; Dougherty, J.
M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239−2258.
(7) (a) Elling, B. R.; Xia, Y. J. Am. Chem. Soc. 2015, 137, 9922−9926.
(b) Weitekamp, R. A.; Atwater, H. A.; Grubbs, R. H. J. Am. Chem. Soc.
2013, 135, 16817−16820. (c) Sveinbjornsson, B. R.; Weitekamp, R.
A.; Miyake, G. M.; Xia, Y.; Atwater, H. A.; Grubbs, R. H. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109, 14332−14336. (d) Xia, Y.; Verduzco, R.;
Grubbs, R. H.; Kornfield, J. A. J. Am. Chem. Soc. 2008, 130, 1735−
1740.
(8) (a) Marx, V. M.; Sullivan, A. H.; Melaimi, M.; Virgil, S. C.; Keitz,
B. K.; Weinberger, D. S.; Bertrand, G.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2015, 54, 1919−1923. (b) Thomas, R. M.; Keitz, B. K.;
Champagne, T. M.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 7490−
7496. (c) Schrodi, Y.; Ung, T.; Vargas, A.; Mkrtumyan, G.; Lee, C. W.;
Champagne, T. M.; Pederson, R. L.; Hong, S. H. Clean: Soil, Air, Water
2008, 36, 669−673. (d) Higman, C. S.; Lummiss, J. A. M.; Fogg, D. E.
Angew. Chem., Int. Ed. 2016, 55, 3552−3565.
ASSOCIATED CONTENT
■
S
* Supporting Information
(9) (a) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L.
The Supporting Information is available free of charge on the
́
Coord. Chem. Rev. 2009, 253, 687−703. (b) Díez-Gonzalez, S.; Nolan,
S. P. Coord. Chem. Rev. 2007, 251, 874−883. (c) Occhipinti, G.;
Bjorsvik, H. R.; Jensen, V. R. J. Am. Chem. Soc. 2006, 128, 6952−6964.
(10) Lummiss, J. A. M.; Higman, C. S.; Fyson, D. L.; McDonald, R.;
Fogg, D. E. Chem. Sci. 2015, 6, 6739−6746.
Experimental procedures and characterization of new
compounds; Eyring plots for 6a−d and 7 (PDF)
Crystallographic data for 6a (CIF)
Crystallographic data for 6b (CIF)
Crystallographic data for 6d (CIF)
(11) (a) Herbert, M. B.; Grubbs, R. H. Angew. Chem., Int. Ed. 2015,
54, 5018−5024. (b) Occhipinti, G.; Hansen, F. R.; Tornroos, K. W.;
Jensen, V. R. J. Am. Chem. Soc. 2013, 135, 3331−3334. (c) Furstner, A.
̈
Science 2013, 341, 1357−1363. (d) Keitz, B. K.; Endo, K.; Patel, P. R.;
Myles, H. B.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693−699.
(12) Bornand, M.; Chen, P. Angew. Chem., Int. Ed. 2005, 44, 7909−
7911.
AUTHOR INFORMATION
■
́
(13) (a) Jovic, M.; Torker, S.; Chen, P. Organometallics 2011, 30,
Corresponding Author
3971−3980. (b) Torker, S.; Muller, A.; Chen, P. Angew. Chem., Int. Ed.
2010, 49, 3762−3766. (c) Bornand, M.; Torker, S.; Chen, P.
Organometallics 2007, 26, 3585−3596.
Notes
(14) (a) Queval, P.; Jahier, C.; Rouen, M.; Artur, I.; Legeay, J. C.;
Falivene, L.; Toupet, L.; Crevisy, C.; Cavallo, L.; Basle, O.; Mauduit,
M. Angew. Chem., Int. Ed. 2013, 52, 14103−14107. (b) Kavitake, S.;
Samantaray, M. K.; Dehn, R.; Deuerlein, S.; Limbach, M.; Schachner, J.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
A.; Jeanneau, E.; Coper
12443−12446. (c) Karame,
K.; Alauzun, J.; Basset, J. M.; Coper
́
et, C.; Thieuleux, C. Dalton Trans. 2011, 40,
I.; Boualleg, M.; Camus, J. M.; Maishal, T.
et, C.; Corriu, R. J.; Jeanneau, E.;
The authors are grateful to the Scientific Equipment Program
́
of ETH Zurich and the Swiss National Science Foundation
̈
́
(R’Equip grant 206021_150709/1) for financial support. A.F.
Mehdi, A.; Reye, C.; Veyre, L.; Thieuleux, C. Chem. - Eur. J. 2009, 15,
11820−11823. (d) Vougioukalakis, G. C.; Grubbs, R. H. Chem. - Eur. J.
2008, 14, 7545−7556. (e) Van Veldhuizen, J. J.; Garber, S. B.;
Kingsbury, J. S.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954−
4955.
thanks Holcim Stiftung for a Habilitation Fellowship. Lukas
Sigrist and Dr. Deven P. Estes (both ETH Zurich) are greatly
̈
acknowledged for X-ray crystallographic analyses and assistance
with the kinetic analysis, respectively.
(15) Anderson, D. R.; Lavallo, V.; O’Leary, D. J.; Bertrand, G.;
Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 7262−7265.
(16) (a) Samantaray, M. K.; Alauzun, J.; Gajan, D.; Kavitake, S.;
REFERENCES
■
(1) (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110,
1746−1787. (b) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450,
243−251.
(2) (a) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH:
Weinheim, Germany, 2014; Vols. 1−3. (b) Grela, K. Olefin Metathesis:
Theory and Practice, 1st ed.; Wiley: NJ, USA, 2014.
́
Mehdi, A.; Veyre, L.; Lelli, M.; Lesage, A.; Emsley, L.; Coperet, C.;
Thieuleux, C. J. Am. Chem. Soc. 2013, 135, 3193−3199. (b) Khan, R.
K.; O’Brien, R. V.; Torker, S.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc.
2012, 134, 12774−12779. (c) Xia, Y.; Boydston, A. J.; Grubbs, R. H.
Angew. Chem., Int. Ed. 2011, 50, 5882−5885.
F
Organometallics XXXX, XXX, XXX−XXX