2890
H. Kobayashi et al. / Tetrahedron 69 (2013) 2885e2890
dimethoxybenzene (0.27 g, 2.0 mmol), and toluene was added to
make the solution volume 50 mL. A second volumetric flask (50 mL)
was charged with triethyl orthoacetate (1.95 g, 12.0 mmol) and tol-
uene was added to make the solution volume 50 mL. Both solutions
were flowed through the microfluidic experimental setup at
0.125 mL/min (Space time: 4 min) by means of two HPLC pumps. The
samples were collected via the sample loop at 30 and 40 min after
each experiment to ensure steady state data collection. The samples
were analyzed with HPLCeUV for quantification of cinnamyl alcohol
via the internal standard method. Another sample was collected and
extracted with 1 M aqueous NaHCO3; the organic phase was analyzed
by GCeFID for the quantification of reaction product. Each data point
in the plot constitutes the average of two samples. Key experiments
were performed at least twice by two different persons to enhance
the reproducibility of our experiments.
References and notes
1. The American Chemical Society (ACS) Green Chemistry Institute (GCI) and
global pharmaceutical companies founded the ACS GCI Pharmaceutical
Roundtable, see also Ref. 2.
2. Jimenez-Gonzalez, C.; Poechlauer, P.; Broxterman, Q. B.; Yang, B.-S.; am Ende,
D.; Baird, J.; Bertsch, C.; Hannah, D. E.; Dell’Orco, P.; Noorman, H.; Yee, S.; Re-
intjens, R.; Wells, A.; Massonneau, V.; Manley, J. Org. Process Res. Dev. 2011, 15,
900e911.
3. Poechlauer, P.; Manley, J.; Broxterman, R.; Gregertsen, B.; Ridemark, M. Org.
4. For selected reviews about micro flow chemistry: (a) Noel, T.; Buchwald, S. L.
Chem. Soc. Rev. 2011, 40, 5010e5029; (b) Wegner, J.; Ceylan, S.; Kirschning, A.
Chem. Commun. 2011, 4583e4592; (c) Wiles, C.; Watts, P. Green Chem. 2012, 14,
38e54; (d) Ley, S. Chem. Rec. 2012, 12, 378e390; (e) Geyer, K.; Gustafsson, T.;
Seeberger, P. H. Synlett 2009, 2382e2391; (f) Noel, T.; Hessel, V. ChemSusChem
€
€
5. For reviews pertaining Novel Process Windows: (a) Hessel, V.; Vural Gursel, I.;
€
Wang, Q.; Noel, T.; Lang, J. Chem. Eng. Technol. 2012, 35, 1184e1204; (b) Hessel,
V.; Cortese, B.; de Croon, M. H. J. M. Chem. Eng. Sci. 2011, 66, 1426e1448; (c)
Razzaq, T.; Kappe, C. O. Chem.dAsian J. 2010, 5, 1274e1289; (d) Hessel, V. Chem.
Eng. Technol. 2009, 32, 1655e1681; (e) Hessel, V.; Kralisch, D.; Krtschil, U. Energy
Environ. Sci. 2008, 1, 467e478.
4.7. Isolated yield of ethyl 3-phenylpent-4-enoate
6. (a) Ziegler, F. E. Chem. Rev. 1988, 88, 1423e1452; (b) Martin Castro, A. M. Chem.
Rev. 2004, 104, 2939e3002.
7. (a) Ito, H.; Taguchi, T. Chem. Soc. Rev. 1999, 28, 43e50; (b) Majumdar, K. C.; Alam,
S.; Chattopadhyay, B. Tetrahedron 2008, 64, 597e643.
Isolated yield was obtained at optimum reaction condition
(220 ꢀC, 100 bar). A volumetric flask (50 mL) was charged with
cinnamyl alcohol (1.35 g, 10.0 mmol), acetic acid (0.13 g, 2.2 mmol),
and toluene was added to make the solution volume 50 mL. A
second volumetric flask (50 mL) was charged with triethyl
orthoacetate (1.95 g, 12.0 mmol) and toluene was added to make
the solution volume 50 mL. Both solutions were fed at 0.125 mL/
min and whole experimental setup was flushed for 90 min at the
reaction condition in order to achieve steady state. The difference
with the above mentioned experiments is attributed due to the
large internal volume of the back pressure regulator. After that,
a sample was collected at the exit of the experimental setup for
exactly 100 min (2.50 mmol of product). The collected sample was
washed 1 M aqueous sodium hydrogen (25 mL) carbonate and the
aqueous layer was washed with same amount of diethyl ether
(25 mL) twice. The combined organic layers were dried by MgSO4.
After filtration of MgSO4, solvents were evaporated in vacuo and
pure product was obtained as a colorless oil (0.475 g, 93% yield). 1H
8. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250e6284.
9. (a) Haraguchi, R.; Takada, Y.; Matsubara, S. Chem. Lett. 2012, 41, 628e629; (b)
Rincon, J. A.; Barberis, M.; Gonzalez-Esguevillas, M.; Johnson, M. D.; Niemeier,
J. K.; Sun, W.-M. Org. Process Res. Dev. 2011, 15, 1428e1432; (c) Kawanami, H.;
Sato, M.; Chatterjee, M.; Otabe, N.; Tuji, T.; Ikushima, Y.; Ishizaka, T.; Yokoyama,
T.; Suzuki, T. M. Chem. Eng. J. 2011, 167, 572e577; (d) Wahab, B.; Ellames, G.;
Passey, S.; Watts, P. Tetrahedron 2010, 66, 3861e3865; (e) Sato, M.; Otabe, N.;
Tuji, T.; Matsushima, K.; Kawanami, H.; Chatterjee, M.; Yokoyama, T.; Ikushima,
Y.; Suzuki, T. M. Green Chem. 2009, 11, 763e766; (f) Kong, L.; Lin, Q.; Lu, X.; Yang,
Y.; Jia, Y.; Zhou, Y. Green Chem. 2009, 11, 1108e1111; (g) Razzaq, T.; Glasnov, T.
N.; Kappe, C. O. Chem. Eng. Technol. 2009, 32, 1702e1716.
€
10. (a) Varas, A. C.; Noel, T.; Wang, Q.; Hessel, V. ChemSusChem 2012, 5, 1703e1707;
€
(b) Noel, T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50,
€
€
€
8900e8903; (c) Hessel, V.; Hofmann, C.; Lob, P.; Lohndorf, J.; Lowe, H.; Ziogas,
A. Org. Process Res. Dev. 2005, 9, 479e489.
11. For a review about solvent effects on Claisen rearrangement: (a) Gajewski, J. J.
Acc. Chem. Res. 1997, 30, 219e225.
12. Acevedo, O.; Armacost, K. J. Am. Chem. Soc. 2010, 132, 1966e1975.
13. Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 9228e9229.
14. We refer to the Electronic Supplementary data for a kinetic analysis of our
experimental results obtained in the Claisen rearrangement of allyl phenyl
ether.
15. For examples, of high temperature applications where solvent expansion is
taken into account: (a) Martin, R. E.; Morawitz, F.; Kuratli, C.; Alker, A. M.; Al-
anine, A. I. Eur. J. Org. Chem. 2012, 47e52; (b) Cantillo, D.; Sheibani, H.; Kappe,
C. O. J. Org. Chem. 2012, 77, 2463e2473.
NMR (400 MHz, CDCl3)
15.0 Hz,1H), 2.75 (dd, J¼8.2, 15.0 Hz,1H), 3.86 (q, J¼7.1 Hz, 1H), 4.07
(q, J¼7.1 Hz, 2H), 5.05 (s, 1H), 5.09 (s, 1H), 5.94e6.02 (m, 1H),
d
: 1.17 (t, J¼7.1 Hz, 3H), 2.68 (dd, J¼7.5,
7.20e7.32 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3)
d: 14.1, 40.3,
16. The liquid densities of 1-butanol, 1-hexanol were estimated via a correlation
given by Cibulka and Zikovh, see Ref. 17b. These equations are valid until 250 ꢀC
and 217 ꢀC, respectively. For comparison reasons, we also used the equations
for higher temperatures. The densities of ethanol were obtained from Ref. 17c.
17. (a) Cibulka, I. Fluid Phase Equilib. 1993, 89, 1e18; (b) Cibulka, I.; Zikovh, M. J.
Chem. Eng. Data 1994, 39, 876e886; (c) Bazaev, A. R.; Abdulagatov, I. M.; Bazaev,
E. A.; Abdurashidova, A. Int. J. Thermophys. 2007, 28, 194e219; (d) Ambrose, D.;
Walton, J. Pure Appl. Chem. 1989, 61, 1395e1403.
45.6, 60.4, 114.8, 126.7, 127.5, 128.6, 140.3, 142.4, 171.9 ppm. IR (ATR,
cmꢁ1): 2982, 1733, 1493, 1453, 1371, 1255, 1157, 1031, 918, 757. EI-
MS: 204 [Mþ].
Acknowledgements
18. Constable, D. J. C.; Jimenez-Gonzalez, C.; Henderson, R. K. Org. Process Res. Dev.
2007, 11, 133e137.
Funding by the Advanced European Research Council Grant
‘Novel Process Windows e Boosted Micro Process Technology’
under grant agreement number 267443 is kindly acknowledged.
H.K. and S.O. would like to thank the Graduate School of Engi-
neering, Tokyo Institute of Technology for financial support. T.N.
would like to acknowledge the support of the Netherlands Orga-
nization for Scientific Research (NWO) for a VENI grant. We would
like to thank Svetlana Borukhova for her help in the assembly of the
experimental setup and Bruno Cortese for advice in the kinetic
analysis of the experimental results.
19. For a review about microreactor clogging: (a) Hartman, R. L. Org. Process Res.
Dev. 2012, 16, 870e887; (b) Flowers, B. S.; Hartman, R. L. Challenges 2012, 3,
194e211.
€
20. (a) Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.; Buchwald,
€
S. L. Chem. Sci. 2011, 2, 287e290; (b) Kuhn, S.; Noel, T.; Gu, L.; Heider, P. L.;
Jensen, K. F. Lab Chip 2011, 11, 2488e2492; (c) Horie, T.; Sumino, M.; Tanaka, T.;
Matsushita, Y.; Ichimura, T.; Yoshida, J.-i. Org. Process Res. Dev. 2010, 14,
405e410.
21. (a) van Eldik, R.; Klaerner, F. G. High Pressure Chemistry; Wiley-VCH: Weinheim,
2002; (b) Drljaca, A.; Hubbard, C. D.; van Eldik, R.; Asano, T.; Basilevsky, M. V.; le
Noble, W. J. Chem. Rev. 1998, 98, 2167e2290; (c) van Eldik, R.; Asano, T.; le
Noble, W. J. Chem. Rev. 1998, 89, 549e688.
22. For a review about high-pressure reactions in glass microreactors: (a) Ver-
boom, W. Chem. Eng. Technol. 2009, 32, 1695e1701.
23. (a) Brower, K. R. J. Am. Chem. Soc. 1961, 83, 4370e4372; (b) Walling, C.; Naiman,
Supplementary data
M. J. Am. Chem. Soc. 1962, 84, 2628e2632.
24. Dymond, J. H.; Malhorta, R. Int. J. Thermophys. 1988, 9, 941e951.
25. Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brockson, T.; Li, T.; Faulkner, D.
J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741e743.
Supplementary data related to this article can be found at http://