Paper
RSC Advances
favored the separation of the mixture containing lower GA 2012CBB21500), Ph.D. Programs Foundation of Ministry of
initial concentrations. Education of China (No. 20123227120015) and Natural Science
At the meanwhile, Fig. 11b shows the 3-D response surface Foundation of Jiangsu Province (BK2011461, SBK2011459,
plot at varying temperature and concentration at xed ow rates BK2011514, BK20140580), China Postdoctoral Science Foun-
ꢀ1
of 3.0 mL min . The maximum separation factor can be ach- dation funded project (Nos. 2012M511220, 2013M530240) and
ꢁ
ieved when temperature and concentration of GA at 15.0 C and Special Financial Grant from the China Postdoctoral Science
ꢀ
1
0
.0325 mmol L . At high temperatures, less GA molecules were Foundation (2014T70488).
required to satisfy the maximum adsorption capacity of the CA–
CAIM. Therefore, the low temperature favors the separation
effect of GA from SA, indicating an exothermic process.
Fig. 11c shows the 3-D response surface plot with varying
temperature and ow rates at xed concentration of GA of
References
1 N. H. Ullsten, M. G ¨a llstedt, E. Johansson, A. Gr ¨a slund and
M. S. Hedenqvist, Biomacromolecules, 2006, 7, 771.
2 M. Hussain, A. Javeed, M. Ashraf, Y. Zhao, M. M. Mukhtar
and M. Ur Rehman, Int. Immunopharmacol., 2012, 12, 10.
3 A. L. Ahmad, M. R. Othman and H. Mukhtar, Int. J. Hydrogen
Energy, 2004, 29, 817.
ꢀ
1
0.179 mmol L . The maximum separation factor can be ach-
ieved in the case of temperature and ow rate at the value of
ꢁ
ꢀ1
1
5.0 C and 1.0 mL min , respectively. The results are con-
sitent with the discussion mentioned above.
.8.3 Optimization and verication of the model. Accord-
3
ing to Fig. 10a–c, it can be concluded that the optimal condi-
tions giving the maximum response for selectivity coefficient
4 H. M. Zhang, X. Quan, S. Chen and H. M. Zhao, Environ. Sci.
Technol., 2006, 40, 6104.
5 N. Hilal, V. Kochkodan, G. Busca, O. Kochkodan and
B. P. Atkin, Sep. Purif. Technol., 2003, 31, 281.
6 T. A. Sergeyeva, O. O. Brovko, E. V. Piletska, S. A. Piletsky,
L. A. Goncharova, L. V. Karabanova, L. M. Sergeyeva and
A. V. El'skaya, Anal. Chim. Acta, 2007, 582, 311.
7 M. S. da Silva, R. Viveiros, A. Aguiar-Ricardo,
V. D. B. Bonif ´a cio and T. Casimiro, RSC Adv., 2012, 2, 5075.
8 C. Y. He, Y. Y. Long, J. L. Pan, K. Li and F. Liu, J. Biochem.
Biophys. Methods, 2007, 70, 133.
ꢀ
1
(
1
13.39) was found in conditions of A ¼ 0.0325 mmol L , B ¼
ꢁ
ꢀ1
5 C, C ¼ 1.0 mL min
.
For their validation of the optimum conditions, triplicate
conrmatory experiments were carried out under the optimized
conditions and the average separation factor (b) was 13.26 ꢂ
0.87%. The results are closely related with the data obtained
from optimization analysis, indicating Box–Behnken design
could be effectively used to optimize the separation GA from SA.
9
Z. Zhang, M. Zhang, Y. Liu, X. Yang, L. Luo and S. Yao, Sep.
Purif. Technol., 2012, 87, 142.
4
. Conclusions
A novel composite imprinted alumina membrane (CIAM) was 10 R. J. Ansell, J. K. Kuah, D. Wang, C. E. Jackson, K. D. Bartle
successfully prepared via the RTIL-mediated NHSG method- and A. A. Clifford, J. Chromatogr. A, 2012, 1264, 117.
ology for selective separation of GA from SA. The adsorption 11 G. Zhu, J. Fan, Y. Gao, X. Gao and J. Wang, Talanta, 2011, 84,
capacity, ux and permeation selectivity of the imprinted 1124.
membranes depended on the functional monomers and the 12 H.
crosslinking degree of polymer layer on the alumina
membrane. CA–CIAM2 was found to be the promising imprin-
Henschel,
N.
Kirsch,
J.
Hedin-Dahlstr ¨o m,
M. J. Whitcombe, S. Wikman and I. A. Nicholls, J. Mol.
Catal. B: Enzym., 2011, 72, 199.
ted membrane to increase the effect on separating GA from SA. 13 C. Baggiani, F. Biagioli, L. Anfossi, C. Giovannoli, C. Passini
Additionally, incorporation of RTIL can greatly increase the and G. Giraudi, React. Funct. Polym., 2013, 73, 833.
porosity, ux and recognition ability, and further improve the 14 J. L. Urraca, M. D. Marazuela, E. R. Merino, G. Orellana and
selectivity of the CIAM to GA. M. C. Moreno-Bondi, J. Chromatogr. A, 2006, 1116, 127.
RSM was used to estimate and optimize the experimental 15 A. Higuchi, M. Tamai, Y. Ko, Y. Tagawa, Y. Wu, B. Freeman,
variables (the concentration of GA, temperature and ow rate) J. Bing, Y. Chang and Q. Ling, Polym. Rev., 2010, 50, 113.
in the dynamic separation process. Under the optimal condi- 16 M. E. D ´ı az-Garc ´ı a and R. B. La ´ı n˜ o, Microchim. Acta, 2005, 149,
ꢀ
1
tions of GA concentration at 0.0325 mmol L , temperature at
19.
5.0 C, ow rate at 1.0 mL min , the experimental selectivity 17 S. Fireman-Shoresh, I. Popov, D. Avnir and S. Marx, J. Am.
Chem. Soc., 2005, 127, 2650.
ꢁ
ꢀ1
1
factor was 13.26 ꢂ 0.87%, which was close to the predicted
selectivity factor value. We expect that the RTIL-mediated NHSG 18 Z. Jiang, Y. Yu and H. Wu, J. Membr. Sci., 2006, 280, 876.
protocol is promising as a general strategy for the fabrication of 19 H. F. Wang, Y. Z. Zhu, X. P. Yan, R. Y. Gao and J. Y. Zheng,
high selective imprinted membrane for purication of trace
Adv. Mater., 2006, 18, 3266.
analytes in the complex matrix.
20 S. Panja, P. K. Mohapatra, S. C. Tripathi, P. M. Gandhi and
P. Janardan, Sep. Purif. Technol., 2012, 96, 289.
2
2
1 T. Welton, Coord. Chem. Rev., 2004, 248, 2459.
2 P. Hapiot and C. Lagrost, Chem. Rev., 2008, 108, 2238.
Acknowledgements
This work was nancially supported by the National Natural 23 Y. Zhou, J. H. Schattka and M. Antonietti, Nano Lett., 2004, 4,
Science Foundation of China (No. 21207051), National key 477.
basic research development program (973 Program, No. 24 Y. Zhou and M. Antonietti, Chem. Mater., 2004, 16, 544.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 38630–38642 | 38641