Communication
RSC Advances
3 J. J. Li, Name reactions in heterocyclic chemistry II, Wiley,
Hoboken, 2011, pp. 430–439.
4 J. H. Gross, Mass spectrometry:
A textbook, Springer,
Heidelberg, 2nd edn, 2011, pp. 604–606.
5 F. J. Andrade, J. T. Shelley, W. C. Wetzel, M. R. Webb,
G. Gamez, S. J. Ray and G. M. Hieje, Anal. Chem., 2008,
80, 2646–2653.
6 E. C. Meurer, L. S. Santos, R. A. Pilli and M. N. Eberlin, Org.
Lett., 2003, 5, 1391–1394.
¨
7 S. Furmeier and J. O. Metzger, J. Am. Chem. Soc., 2004, 126,
14485–14492.
8 (a) J. Auld and D. R. Hastie, Int. J. Mass Spectrom., 2009, 282,
91–98; (b) C. H. Hsieh, C. S. Chao, K. K. T. Mong and
Y. C. Chen, J. Mass Spectrom., 2012, 47, 586–590.
9 E. C. Meurer, A. A. Sabino and M. N. Eberlin, Anal. Chem.,
2003, 75, 4701–4709.
Fig. 5 1H NMR spectra (400 MHz, D2O) of: (a) the authentic 2,5-DOF
(4) by traditional synthesis methods using phenylboronate as catalyst;
(b) unpurified samples collected from APCI-thermospray synthesis.
The signals marked with “*” helped us to confirm the products from
APCI-thermospray synthesis containing the 2,5-DOF.
10 Z. X. Zhao, H. Y. Wang and Y. L. Guo, Curr. Org. Chem., 2011,
15, 3734–3749.
11 (a) Y. H. Song, H. Chen and R. G. Cooks, Rapid Commun.
Mass Spectrom., 2005, 19, 3493–3499; (b) H. Chen,
O. Y. Zheng and R. G. Cooks, Angew. Chem., Int. Ed., 2006,
45, 3656–3660; (c) H. Chen, L. S. Eberlin, M. Neiu,
R. Augusti and R. G. Cooks, Angew. Chem., Int. Ed., 2008,
47, 3422–3425.
12 Y. F. Chai, N. Hu and Y. J. Pan, J. Am. Soc. Mass Spectrom.,
2013, 24, 1097–1101.
13 W. W. Pigman, D. Horton and J. D. Wander, The
Carbohydrates, Academic Press, New York, 2nd Edn, 1980,
vol 1B, pp. 727–728.
solid residuals in the APCI ion source (Fig. S5†). The MS
(Fig. S6†) and NMR analysis (Fig. 5 and S7†) showed that they
contained 2,5-DOF. The typical signals of two H atoms in pyr-
azine ring at 8.64 and 8.47 ppm and signals of CH2 near pyr-
azine ring at 2.94–2.88 and 3.13–3.17 ppm (in Fig. 5b) also
clearly conrmed the occurrence of the Gutknecht self-
cyclocondensation of amino-sugars at APCI-ion source. There-
fore, the APCI-based synthesis of 2,5-DOFs directly from amino-
sugar hydrochloride salts provides a promising clue for a more
clean and green boron-free synthesis strategy. Nowadays, more
and more attentions were paid for developing new synthesis
methods of the highly-value increasing deoxyfructosazine deri-
vates, because these compounds were widely used as the avour
agent in food and tobacco industry and had the pharmacolog-
ical and physiological applications for diabetes, cancers and
immunological and inammatory diseases.22 The next step of
our researches is to design and build a more practical and
efficient thermospray device by mimicking our APCI experiment
conditions to realize such borate-free Gutknecht synthesis of
2,5-DOF from D-glucosamine hydrochloride directly.
14 C. Lapthorn, F. Pullen and B. Z. Chowdhry, Mass Spectrom.
Rev., 2013, 32, 43–71.
´
´ ´
¨
´
15 (a) A. Revesz, D. Schroder, T. A. Rokob, M. Havlık and
´
B. Dolensky, Angew. Chem., Int. Ed., 2011, 50, 2401–2404;
¨
ˇ´
´
(b) D. Schroder, M. Budesınsk´y and J. Roithova, J. Am.
Chem. Soc., 2012, 134, 15897–15905; (c) C. J. Shaffer,
¨
¨
¨
D. Schroder, C. Gutz and A. Lutzen, Angew. Chem., Int. Ed.,
2012, 51, 8097–8100.
16 R. D. Espy, M. Wleklinski, X. Yan and R. G. Cooks, TrAC,
Trends Anal. Chem., 2014, 57, 135–146.
17 J. Rohovec, J. Kotek, J. A. Peters and T. Maschmeyer, Eur. J.
Org. Chem., 2001, 3899–3901.
Acknowledgements
18 F. W. Lichtenthaler, Acc. Chem. Res., 2002, 35, 728–737.
19 L. Y. Jia, Y. X. Wang, Y. Qiao, Y. Q. Qi and X. L. Hou, RSC Adv.,
2014, 4, 44253–44260.
20 (a) K. Sumoto, M. Irie, N. Mibu, S. Miyano, Y. Nakashima,
K. Watanabe and T. Yamaguchi, Chem. Pharm. Bull., 1991,
39, 792–794; (b) A. Zhu, J. B. Huang, A. Clark, R. Romero
and H. R. Petty, Carbohydr. Res., 2007, 342, 2745–2749.
We are grateful for nancial supports from the National Natural
Science Foundation of China (21532005, 21475145 and
21472228) and Youth Innovation Promotion Association CAS
(2013171) and Opening Projects of Key Laboratory of Tobacco
Flavor Basic Research of CNTC (DZ2013047). Thanks for the
helps of Man-Yu Zhang, Qiang Han and Xiang-Dong Jiang of
Agilent Technologies (China) Co., Ltd.
¨
21 T. Muller, A. Badu-Tawiah and R. G. Cooks, Angew. Chem.,
Int. Ed., 2012, 51, 11832–11835.
Notes and references
22 (a) M. Vanduin, J. A. Peters, A. P. G. Kieboom and
H. Vanbekkum, Tetrahedron, 1985, 41, 3411–3421; (b)
R. Vandenberg, J. A. Peters and H. Vanbekkum, Carbohydr.
Res., 1994, 253, 1–12; (c) Q. Li, Y. H. Ye, A. X. Yan,
Y. W. Zhou, H. Shen and Q. Y. Xing, Chem. Res. Chin.
Univ., 2001, 22, 1824–1828.
1 (a) H. Gutknecht, Chem. Ber., 1879, 12, 2290–2292; (b)
H. Gutknecht, Chem. Ber., 1880, 13, 1116–1119.
2 (a) K. L. Hoy and W. H. Hartung, J. Org. Chem., 1958, 23, 967–
971; (b) A. G. Myers, D. W. Kung and B. Zhong, J. Am. Chem.
Soc., 2000, 122, 3236–3237.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 105079–105083 | 105083