10.1002/anie.201901833
Angewandte Chemie International Edition
COMMUNICATION
2010, 39, 3633-3647; c) D. S. Kim, J. L. Sessler, Chem. Soc. Rev.
2015, 44, 532-546; d) S. Benz, M. Macchione, Q. Verolet, J. Mareda,
N. Sakai, S. Matile, J. Am. Chem. Soc. 2016, 138, 9093-9096; e) P.
A. Gale, J. T. Davis, R. Quesada, Chem. Soc. Rev. 2017, 46, 2497-
2519.
transitions do exist in these current traces. By plotting digitized
current values vs. number of occurrences, point amplitude
histograms were generated based on which a mean current
value could be obtained (Figure 3d). Using these histograms, we
obtained a mean value of 6.1 pA for channel currents recorded
at 180 mV (Figure 3d; for mean values at other voltages, see
Figure S10). Linear fitting of current-voltage (I-V) curve gives a
K+ conductance value (γK+) of 29.4 ± 1.5 pS (Figure 3E). This
conductance value, which is 27% higher than that of gramicidin
A (23.2 ± 0.4 pS) recently determined by us,[7b] corresponds to a
highly efficient transport of 1.8 x 107 K+ ions/s at 100 mV.
[2] a) S. Matile, A. Vargas Jentzsch, J. Montenegro, A. Fin, Chem. Soc.
Rev. 2011, 40, 2453-2474; b) A. Vargas Jentzsch, A. Hennig, J.
Mareda, S. Matile, Acc. Chem. Res. 2013, 46, 2791-2800; c) J.
Montenegro, M. R. Ghadiri, J. R. Granja, Acc. Chem. Res. 2013, 46,
2955-2965; d) T. M. Fyles, Acc. Chem. Res. 2013, 46, 2847-2855;
e) F. Otis, M. Auger, N. Voyer, Acc. Chem. Res. 2013, 46, 2934-
2943; f) G. W. Gokel, S. Negin, Acc. Chem. Res. 2013, 46, 2824-
2833; g) M. Barboiu, A. Gilles, Acc. Chem. Res. 2013, 46, 2814-
2823; h) B. Gong, Z. Shao, Acc. Chem. Res. 2013, 46, 2856-2866;
i) W. Si, P. Xin, Z.-T. Li, J.-L. Hou, Acc. Chem. Res. 2015, 48, 1612-
1619; j) Y. P. Huo, H. Q. Zeng, Acc. Chem. Res. 2016, 49, 922-930.
[3] a) G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev. 2005,
105, 1281-1376; b) W. R. Browne, B. L. Feringa, Nat. Nanotech.
2006, 1, 25; c) J. Berná, D. A. Leigh, M. Lubomska, S. M. Mendoza,
E. M. Pérez, P. Rudolf, G. Teobaldi, F. Zerbetto, Nat. Mater. 2005, 4,
704; d) J. Bath, A. J. Turberfield, Nat. Nanotech. 2007, 2, 275; e) V.
Balzani, A. Credi, M. Venturi, Chem. Soc. Rev. 2009, 38, 1542-
1550; f) A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B.
A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19-30; g) S. Erbas-
Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem.
Rev. 2015, 115, 10081-10206; h) K. Hermann, Y. Ruan, A. M.
Hardin, C. M. Hadad, J. D. Badjić, Chem. Soc. Rev. 2015, 44, 500-
514; i) C. Pezzato, C. Cheng, J. F. Stoddart, R. D. Astumian, Chem.
Soc. Rev. 2017, 46, 5491-5507; j) S. Kassem, T. van Leeuwen, A. S.
Lubbe, M. R. Wilson, B. L. Feringa, D. A. Leigh, Chem. Soc. Rev.
2017, 46, 2592-2621; k) J. H. van Esch, R. Klajn, S. Otto, Chem.
Soc. Rev. 2017, 46, 5474-5475; l) J. D. Harris, M. J. Moran, I.
Aprahamian, Proc. Natl. Acad. Sci. USA 2018, 115, 9414-9422.
[4] a) J.-P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080-11093; b)
J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094-11125; c) B.
L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060-11078.
[5] a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon,
C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440,
163; b) L. Greb, J.-M. Lehn, J. Am. Chem. Soc. 2014, 136, 13114-
13117; c) Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic,
J. T. Foy, N. Giuseppone, Nat. Nanotech. 2015, 10, 161; d) M. R.
Wilson, J. Solà, A. Carlone, S. M. Goldup, N. Lebrasseur, D. A.
Leigh, Nature 2016, 534, 235; e) S. Erbas-Cakmak, S. D. P. Fielden,
U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, M. R. Wilson,
Science 2017, 358, 340-343; f) P. Thordarson, E. J. A. Bijsterveld, A.
E. Rowan, R. J. M. Nolte, Nature 2003, 424, 915; g) B.
Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M.
J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M.
D’Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189-
193; h) V. Serreli, C.-F. Lee, E. R. Kay, D. A. Leigh, Nature 2007,
445, 523; i) C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N.
A. Vermeulen, C. Ke, J. F. Stoddart, Nat. Nanotech. 2015, 10, 547;
j) M. C. Jiménez, C. Dietrich-Buchecker, J.-P. Sauvage, Angew.
Chem. Int. Ed. 2000, 39, 3284-3287; k) C. J. Bruns, J. F. Stoddart,
Acc. Chem. Res. 2014, 47, 2186-2199; l) M. von Delius, E. M.
Geertsema, D. A. Leigh, Nat. Chem. 2009, 2, 96; m) S. Kassem, A.
T. L. Lee, D. A. Leigh, A. Markevicius, J. Solà, Nat. Chem. 2015, 8,
138.
The highly efficient molecular swing-mediated transmembrane
transport of K+ ions encouraged us to further investigate possible
uses of MS-C5 and MS-C6 in cancer chemotherapy. As the
most aggressive primary brain tumor, glioblastoma expresses a
variety of ion channels, with expression level of large
conductance K+ channels shown to positively correlate with the
tumor malignancy grade.[8a] These K+ channels are crucial in
buffering extracellular K+ ions for neuronal homeostasis as over-
accumulation of K+ ions in the extracellular space results in
depolarized neurons, which become less capable or even
incapable of firing action potentials. Following a standard cell
culturing protocol, the IC50 values of MS-C5 and MS-C6 toward
human primary glioblastoma cell line (U-87 MG, ATCC) were
determined to be 60 ± 1.4 M and 45 ± 0.6 M, respectively
(Figure S11). This suggests significant anticancer activities of
the molecular swings. In comparison, K+ channel blockers
including quinidine mostly display IC50 values of ~ 60 M and
above toward U-87 MG cell lines.[8b]
In summary, we have conceptually proposed and
experimentally verified a novel molecular machine-inspired
swing mechanism for promoting highly efficient transmembrane
flux of K+ ions. While operating in a single channel-like fashion,
this class of molecular swings does not have a single well-
defined ion permeation pathway to follow. Instead, ion transport
is mediated through numerous pathways, with an averaged
performance in potassium transport that is 27% better than
gramicidin A. Such highly active potassium transport helps to
deliver good IC50 values of 60 and 45 M, respectively, for MS-
C5 and MS-C6 toward brain tumor U-87 MG. Further structural
optimizations might lead to higher anticancer activities. Given
currently available varied types of molecular machines with
ranging and emerging functions, our strategy demonstrated here
may capture the imagination and attention of others in creating a
broad variety of “motional” channels with single-channel
behaviors as well as high activity and selectivity in
transmembrane transport. Besides breaking new grounds
scientifically, these motional channels may lead to practical
medical benefits in the future.
Acknowledgements
[6] S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang, T. Xu, Q. Lin, D.-H. Qu,
X. Gong, Y. Yang, L. Zhu, H. Tian, J. Am. Chem. Soc. 2018.
[7] a) H. Q. Zhao, S. Sheng, Y. H. Hong, H. Q. Zeng, J. Am. Chem.
Soc. 2014, 136, 14270–14276; b) C. L. Ren, J. Shen, H. Q. Zeng, J.
Am. Chem. Soc. 2017, 139, 12338–12341; c) C. L. Ren, X. Ding, A.
Roy, J. Shen, S. Zhou, F. Chen, S. F. Yau Li, H. Ren, Y. Y. Yang, H.
Q. Zeng, Chem. Sci. 2018, 9, 4044-4051 ; d) C. L. Ren, F. Zeng, J.
Shen, F. Chen, A. Roy, S. Zhou, H. Ren, H. Q. Zeng, J. Am. Chem.
Soc. 2018, 140, 8817–8826.
This work was supported by the Institute of Bioengineering and
Nanotechnology and the NanoBio Lab (Biomedical Research
Council, Agency for Science, Technology and Research,
Singapore).
Keywords: Supramolecular chemistry · Synthetic ion channel ·
Molecular machine · Molecular Swing
[8] a) R. J. Molenaar, ISRN Neurol. 2011, 2011, 590249; b) Q. Ru, X.
Tian, M. S. Pi, L. Chen, K. Yue, Q. Xiong, B. M. Ma, C. Y. Li, Int. J.
Oncol. 2015, 46, 833-840.
[1] a) J. T. Davis, O. Okunola, R. Quesada, Chem. Soc. Rev. 2010, 39,
3843-3862; b) P. R. Brotherhood, A. P. Davis, Chem. Soc. Rev.
This article is protected by copyright. All rights reserved.