10.1002/anie.201901571
Angewandte Chemie International Edition
COMMUNICATION
[2]
[3]
L. Vécsei, L. Szalárdy, F. Fülöp, J. Toldi, Nat. Rev. Drug Discov. 2013,
12, 64–82.
F. G. Salituro, R. C. Tomlinson, B. M. Baron, M. G. Palfreyman, I. A.
McDonald, W. Schmidt, H. Q. Wu, P. Guidetti, R. Schwarcz, J. Med.
Chem. 1994, 37, 334–336.
M. Varasi, A. Della Torre, F. Heidempergher, P. Pevarello, C.
Speciale, P. Guidetti, D. Wells, R. Schwarcz, Eur. J. Med. Chem.
1996, 31, 11–21.
K. A. Reynolds, H. Luhavaya, J. Li, S. Dahesh, V. Nizet, K.
Yamanaka, B. S. Moore, J. Antibiot. 2018, 71, 333–338.
K. Yamanaka, K. A. Reynolds, R. D. Kersten, K. S. Ryan, D. J.
Gonzalez, V. Nizet, P. C. Dorrestein, B. S. Moore, Proc. Natl. Acad.
Sci. U.S.A. 2014, 111, 1957–1962.
formation of disubstituted taromycins. Especially pleasing was the
incorporation of fluorinated amino acids with yields close to
taromycin production level (Figure 4, Table 1). Addition of fluorine
is an important modification in medicinal chemitry that often
results in improved selectively, stability, and cell permeability of
the therapeutically relevant compounds.[30] We generated eight
analogues of taromycin (four each of the 2 and 3 series) that
contain either one or two fluorine substitutions and are presently
exploring yield optimization and bioactivity testing.
[4]
[5]
[6]
In summary, we genetically and biochemically validated the
three-step enzymatic route from L-Trp to L-4-Cl-Kyn. We
anticipate that these enzymes will find utility as biocatalysts,
especially when combined with enzyme engineering, and are a
valuable addition to the toolkit for potential chemoenzymatic
synthesis of halogenated aromatic molecules. Importantly, given
the valuable therapeutic properties of L-4-Cl-Kyn and its ability to
readily cross the blood-brain barrier, Tar13-16 enzymes represent
an exciting opportunity for development as a microbiome-based
therapy[31] for the treatment of neurological disorders.[32]
[7]
[8]
[9]
V. A. Alferova, et al., Amino Acids 2018, 50, 1697–1705.
R. Schwarcz, Curr. Opin. Pharmacol. 2004, 4, 12–17.
O. Kurnasov, L. Jablonski, B. Polanuyer, P. Dorrestein, T. Begley, A.
Osterman, FEMS Microbiol. Lett. 2003, 227, 219–227.
M. Nozaki, Y. Ishimura, Biochem. J. 1972, 128, 24P-25P.
A. Sheoran, A. King, A. Velasco, J. M. Pero, S. Garneau-Tsodikova,
Mol. BioSyst. 2008, 4, 622–628.
M. J. M. Hitchcock, E. Katz, Arch. Biochem. Biophys. 1988, 261, 148–
160.
U. Keller, M. Lang, I. Crnovcic, F. Pfennig, F. Schauwecker, J.
Bacteriol. 2010, 192, 2583–2595.
C. Zhang, L. Kong, Q. Liu, X. Lei, T. Zhu, J. Yin, B. Lin, Z. Deng, D.
You, PLoS One 2013, 8, e56772.
D. Brown, M. J. Hitchcock, E. Katz, Can. J. Microbiol. 1986, 32, 465–
472.
P. C. Dorrestein, E. Yeh, S. Garneau-Tsodikova, N. L. Kelleher, C. T.
Walsh, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 13843–13848.
M. A. Ortega, et al., ACS Chem. Biol. 2017, 12, 548–557.
Y. Liu, W. Tao, S. Wen, Z. Li, A. Yang, Z. Deng, Y. Sun, mBio 2015, 6,
e01714–e01715.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
Experimental Section
[17]
[18]
Experimental Details are given in the Supporting Information
online.
[19]
[20]
J. P. Gomez‐Escribano, M. J. Bibb, Microb. Biotechnol. 2011, 4, 207–
215.
C. J. Wilkinson, Z. A. Hughes-Thomas, C. J. M. Rowe, I. Böhm, M.
Deacon, M. Wheatcroft, G. Wirtz, J. Staunton, P. Leadlay, J. Mol.
Microbiol. Biotechnol. 2002, 4, 417–426.
[21]
[22]
[23]
C. Dong, S. Flecks, S. Unversucht, C. Haupt, K.-H. van Pée, J. H.
Naismith, Science 2005, 309, 2216–2219.
A. E. Gamal, et al., Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 3797–
3802.
Acknowledgements
This work was supported by NIH grant R01-GM085770 to B.S.M.,
the Simons Foundation Fellowship of the Life Science Research
Foundation to J.R.C., an NSERC postdoctoral fellowship to
S.M.K.M., São Paulo Research Foundation FAPESP Proc.
2016/25735-1 to R.S. We thank Dr. P. Jensen and Dr. W. Fenical
for S. sp. CNQ-490, Dr. M. Bibb for S. coelicolor M1146, Dr. S.
Nair for PtdH and SsuE expression plasmids, Dr. P. Leadlay for
pCJW93 and S. coelicolor CH999. We thank Dr. J. Noel and Dr.
G. Louie for providing beamtime and assistance with beamline
operation.
B. R. K. Menon, J. Latham, M. S. Dunstan, E. Brandenburger, U.
Klemstein, D. Leys, C. Karthikeyan, M. F. Greaney, S. A. Shepherd, J.
Micklefield, Org. Biomol. Chem. 2016, 14, 9354–9361.
J. R. Heemstra, C. T. Walsh, J. Am. Chem. Soc. 2008, 130, 14024–
14025.
D. R. M. Smith, A. R. Uria, E. J. N. Helfrich, D. Milbredt, K.-H. van
Pée, J. Piel, R. J. M. Goss, ACS Chem. Biol. 2017, 12, 1281–1287.
A.-C. Moritzer, H. Minges, T. Prior, M. Frese, N. Sewald, H. H.
Niemann, J. Biol. Chem. 2018, jbc.RA118.005393.
F.-Y. Chang, S. F. Brady, Proc. Natl. Acad. Sci. U.S.A. 2013, 110,
2478–2483.
S. A. Shepherd, B. R. K. Menon, H. Fisk, A.-W. Struck, C. Levy, D.
Leys, J. Micklefield, ChemBioChem 2016, 17, 821–824.
X. Zhu, W. De Laurentis, K. Leang, J. Herrmann, K. Ihlefeld, K.-H. van
Pée, J. H. Naismith, J. Mol. Biol. 2009, 391, 74–85.
K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
V. M. Isabella, et al., Nature Biotechnol. 2018, 36, 857–864.
P. J. Kennedy, J. F. Cryan, T. G. Dinan, G. Clarke,
Neuropharmacology 2017, 112, 399–412.
[24]
[25]
[26]
[27]
[28]
[29]
Conflict of Interest
[30]
[31]
[32]
The authors declare no conflict of interest.
Keywords: biocatalysis • biosynthesis • chlorokynurenine •
halogenation • natural product
[1]
T. L. Yaksh, R. Schwarcz, H. R. Snodgrass, J. Pain 2017, 18, 1184–
1196.
This article is protected by copyright. All rights reserved.