P. A. Waske et al. / Tetrahedron Letters 47 (2006) 1329–1332
1331
1948, 176, 1363; (d) Fieser, L. F.; Berliner, E.; Bondhus, F.
J.; Chang, F. C.; Dauben, W. G.; Ettlinger, M. G.; Fawaz,
G.; Fields, M.; Fieser, M.; Heidelberger, C.; Heymann, H.;
Seligman, A. M.; Vaughan, W. R.; Wilson, A. G.; Wilson,
E.; Wu, M.-I.; Leffler, M. T.; Hamlin, K. E.; Hathaway,
R. J.; Matson, E. J.; Moore, E. E.; Moore, M. B.; Rapala,
R. T.; Zaugg, H. E. J. Am. Chem. Soc. 1948, 70, 3151, and
following papers.
used as a straightforward preparation of synthetically
important precursors to quinonoid pharmaceuticals
and agrochemicals.
Acknowledgements
This research project was financially supported by the
Arbeitsgemeinschaft Solar Nordrhein-Westfalen (The-
menfeld 3: Solare Chemie und Solare Materialunter-
suchungen) and Dublin City University (Research
Alliance Fund). P.A.W. thanks the Universita¨t Bielefeld
for a research fellowship. The authors would also like to
thank Dr. J. O. Bunte for his support and Dr. M. Letzel,
Mr. E. Westermeier and Mr. P. Mester for technical
assistance.
8. (a) Hase, J.; Nishimura, T. Yakugaku Zasshi—J. Pharm.
Soc. Jpn. 1955, 75, 203; (b) Hase, J.; Nishimura, T.
Yakugaku Zasshi—J. Pharm. Soc. Jpn. 1955, 75, 207.
9. (a) Suganuma, H. J. Synth. Org. Chem. Jpn. 2001, 59, 23;
(b) Koura, Y.; Kinoshita, S.; Takasuka, K.; Koura, S.;
Osaki, N.; Matsumoto, S.; Miyoshi, H. J. Pesticide Sci.
1998, 23, 18.
10. General procedure for irradiation: In a typical photo-
chemical experiment, a solution of 1 mmol of the naph-
thoquinone and 9 mmol of aldehydes in 60 ml of dry
benzene was split over 5 Pyrex tubes (capacity 12 ml each),
degassed with argon and irradiated for 12–18 h using a
Rayonet Photochemical reactor (RPR–100; Southern New
England Ultraviolet Company) equipped with RPR 4190
References and notes
˚
A lamps (kmax = 419 15 nm). The reaction was contin-
1. (a) The Chemistry of the Quinonoid Compounds; Patai, S.,
Ed.; John Wiley & Sons: New York, 1974; (b) Thompson,
R. H. Naturally Occurring Quinones, 2nd ed.; Academic
Press: New York, 1971; (c) Biochemistry of Quinones;
Morton, R. A., Ed.; Academic Press: New York, 1965.
2. (a) Oelgemo¨ller, M.; Schiel, C.; Fro¨hlich, R.; Mattay, J.
Eur. J. Org. Chem. 2002, 2465; (b) Schiel, C.; Oelgemo¨ller,
M.; Mattay, J. Synthesis 2001, 1275; (c) Schiel, C.;
Oelgemo¨ller, M.; Ortner, J.; Mattay, J. Green Chem.
2001, 3, 224; (d) Oelgemo¨ller, M.; Schiel, C.; Ortner, J.;
Mattay, J. In Solare Chemie und solare Materialforschung,
AG-Solar NRW, Ed.; 2002; Chapter 2.2., ISBN: 3-89336-
306-8 (CD-Rom).
3. For other ‘photo Friedel–Crafts’ reactions, see: (a) Mar-
tens, J.; Praefcke, K.; Schulze, U. Synthesis 1976, 532; (b)
Bryce-Smith, D.; Deshpande, R.; Gilbert, A.; Grzonka, J.
Chem. Commun. 1970, 561.
4. (a) Klinger, H. Justus Liebigs Ann. Chem. 1888, 249, 137;
(b) Klinger, H.; Standke, O. Ber. Dtsch. Chem. Ges. 1891,
24, 1340; (c) Klinger, H.; Kolvenbach, W. Ber. Dtsch.
Chem. Ges. 1898, 31, 1214.
5. For a recent review on the photoacylation of quinones,
see: (a) Oelgemo¨ller, M.; Mattay, J. In CRC Handbook of
Organic Photochemistry and Photobiology; Horspool, W.
M., Lenci, F., Eds., 2nd ed.; CRC Press: Boca Raton,
2004; Chapter 88, pp 1–45; For general reviews on the
photochemistry of quinones, see: (b) Maruyama, K.;
Osuka, A. In The Chemistry of Quinonoid Compounds;
Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: New
York, 1988; Vol. 2, Chapter 13, pp 759–878; (c) Bruce, J.
M. Quart. Rev. 1967, 21, 405; (d) Rubin, M. B. Fortschr.
Chem. Forsch. 1969, 13, 251.
ued until GC analysis indicated complete consumption of
the quinone. The combined solutions were evaporated
under vacuum and the crude residue was purified by flash
column chromatography (silica gel, 30% ethyl acetate in
cyclohexane), followed, if required, by preparative HPLC.
Selected physical and spectral data for the product 2-
butyryl-3-methyl-1,4-naphthoquinone 3a: light yellow
solid, mp 76–79 °C. 1H NMR (500 MHz, CDCl3):
d = 0.98 (t, 3H, J = 7.5 Hz, CH2CH3), 1.72 (dq, 2H,
J = 7.5 Hz, CH2CH3), 2.06 (s, 3H, CH3), 2.69 (t, 2H,
J = 7.5 Hz, COCH2), 7.74 (m, 2H, Ar-H), 8.03 (m, 1H,
Ar-H), 8.08 ppm (m, 1H, Ar-H). 13C NMR (125 MHz,
CDCl3): d = 13.1 (CH3), 13.7 (CH3), 16.5 (CH2), 46.1
(CH2), 126.1 (CH), 126.6 (CH), 131.4 (C), 131.7 (C), 134.0
(CH), 134.1 (CH), 142.4 (C), 145.7 (C), 183.5 (C@O),
185.1 (C@O), 203.9 ppm (C@O). IR (KBr): m = 2961,
2935, 2875, 2362, 1702, 1663, 1594, 1458, 1375, 1326, 1289,
1151, 1006, 958, 793, 703 cmÀ1. MS (EI): m/z (%) = 242
(M+, 80), 228 (4), 227 (23), 200 (20), 199 (95), 196 (2), 174
(12), 171 (100), 143 (21), 116 (12), 115 (69), 89 (17), 89
(16), 76 (18), 67 (16), 58 (14), 43 (36). HR-MS (EI+):
242.09425 (calcd 242.09429).
11. The formation of C- versus O-acylation products was
explained on the basis of the nucleophilicity of the acyl
radical intermediate and the redox properties of the
quinone and the acyl radical: (a) Bruce, J. M.; Creed,
D.; Ellis, J. N. J. Chem. Soc. C 1967, 1486; (b) Takuwa, A.
Bull. Chem. Soc. Jpn. 1977, 50, 2973.
12. Selected physical and spectral data for the product 2-
butyryl-3-methyl-2,3-dihydro-1,4-naphthoquinone 4: col-
1
orless oil. H NMR (500 MHz, CDCl3): d = 0.68 (t, 3H,
J = 7.2 Hz, CH2CH3), 1.36–1.46 (m, 2H, CH2CH3), 1.58
(s, 3H, CH3), 2.30 (ddd, 1H, J = 17.9, 7.8, 6.2 Hz,
COCH2), 2.46 (ddd, 1H, J = 17.9, 7.7, 6.6 Hz, COCH2),
2.73 (d, 1H, J = 16.9 Hz, CH2), 3.36 (d, 1H, J = 16.9 Hz,
CH2), 7.69 (m, 2H, Ar-H), 7.98 (m, 1H, Ar-H), 8.06 ppm
(m, 1H, Ar-H). 13C NMR (125 MHz, CDCl3): d = 13.3
(CH3), 16.9 (CH2), 20.0 (CH3), 39.2 (CH2), 46.9 (CH2),
65.1 (C), 126.7 (CH), 127.2 (CH), 133.9 (C), 134.2 (CH),
134.7 (CH), 135.3 (C), 193.4 (C@O), 195.3 (C@O), 206.8
ppm (C@O). IR (KBr): m = 2963, 2934, 2874, 1687, 1665,
1594, 1458, 1379, 1286, 1265, 1216, 978 cmÀ1. MS (EI):
m/z (%) = 244 (M+, 16), 228 (3), 201 (5), 185 (12), 175 (14),
174 (100), 159 (91), 159 (9), 149 (11), 131 (6), 128 (5), 117
(4), 105 (10), 91 (5), 76 (14), 71 (45), 55 (2), 43 (66). HR-
MS (EI+): 244.10967 (calcd 244.10994).
6. The reaction of 1 and acetaldehyde gave exclusively 2-
methyl-3-acetyl-naphthohydroquinone,
although
no
experimental details were reported: (a) Schenck, G. O.;
Koltzenburg, G. Naturwiss. 1954, 41, 452; For benzophen-
one mediated photoacylations of 2-arylamino- and 2-
alkylamino 1,4-naphthoquinones, see: (b) Kobayashi, K.;
Suzuki, M.; Takeuchi, H.; Konishi, A.; Sakurai, H.;
Suginome, H. J. Chem. Soc., Perkin Trans. 1 1994, 1099.
7. For Antimalarials based on 1, see: (a) Biot, C.; Bauer, H.;
Schirmer, R. H.; Davioud-Charvet, E. J. Med. Chem.
2004, 47, 5972; (b) Davioud-Charvet, E.; Delarue, S.; Biot,
C.; Schwo¨bel, B.; Boehme, C. C.; Mussigbrodt, A.; Maes,
¨
L.; Sergheraert, C.; Grellier, P.; Schirmer, R. H.; Becker,
K. J. Med. Chem. 2001, 44, 4268; For Antimalarials based
on 5, see: (c) Fieser, L. F.; Heymann, H. J. Biol. Chem.