Organic & Biomolecular Chemistry
Communication
showed low fluorescence, while in the presence of PAL and 2a-
LP, HeLa cells show strong fluorescence, which also suggest
that PAL can be monitored intracellularly by 2a-LP. This result
demonstrates that 2a-LP has potential in visualizing PAL level
changes of living cells, and 2a-LP can be a novel tool for PKU
ERT research.
S. Surendran, R. C. Stevens, A. Gamez, K. Michols-Matalon,
S. K. Tyring and R. Matalon, Mol. Ther., 2004, 10, 220–224;
(c) N. Blau, F. J. van Spronsen and H. L. Levy, Lancet, 2010,
376, 1417–1427.
3 R. R. Fritz, D. S. Hodgins and C. W. Abell, J. Biol. Chem.,
1976, 251, 4646–4650.
4 (a) R. A. Dixon, L. Achnine, P. Kota, C. J. Liu, M. S. S. Reddy
and L. J. Wang, Mol. Plant Pathol., 2002, 3, 371–390;
(b) D. M. A. Dempsey, J. Shah and D. F. Klessig, Crit. Rev.
Plant Sci., 1999, 18, 547–575; (c) L. Chalker-Scott, Photo-
chem. Photobiol., 1999, 70, 1–9.
Conclusions
In summary, we have developed a new fluorescent probe, 2a-
LP, based on the modification of PAL natural substrate, L-Phe,
for PAL activity. Enzymatic deamination can be monitored
upon mixing the probe and samples, without any additional
treatment. Successful monitoring of this enzymatic activity is
realized by utilizing the UAA deamination mechanism for the
first time. This probe can be applied to monitor PAL activity in
both plant samples and HeLa cells, and perhaps be a promis-
ing tool for the detection of PAL activity and plant induced
resistance research.
5 J. Kovacik and B. Klejdus, J. Plant Physiol., 2012, 169, 1317–
1320.
6 (a) M. Gray-Mitsumune, E. K. Molitor, D. Cukovic,
J. E. Carlson and C. J. Douglas, Plant Mol. Biol., 1999,
39, 657–669; (b) X. H. Wang, M. Gong, L. Tang,
S. Zheng, J. D. Lou, L. C. Ou, J. Gomes-Laranjo and
C. H. Zhang, Mol. Biol. Rep., 2013, 40, 97–107;
(c) J. E. Rookes and D. M. Cahill, Eur. J. Plant Pathol.,
2003, 109, 83–94.
7 (a) S. D’Auria and J. R. Lakowicz, Curr. Opin. Biotechnol.,
2001, 12, 99–104; (b) A. Razgulin, N. Ma and J. Rao,
Chem. Soc. Rev., 2011, 40, 4186–4216; (c) J. Zhang,
R. E. Campbell, A. Y. Ting and R. Y. Tsien, Nat. Rev.
Mol. Cell Biol., 2002, 3, 906–918; (d) C. Huang, Q. Yin,
W. Zhu, Y. Yang, X. Wang, X. Qian and Y. Xu, Angew.
Chem., Int. Ed., 2011, 50, 7551–7556; (e) R. W. Ramette
and E. B. Sandell, J. Am. Chem. Soc., 1956, 78, 4872–
4878.
8 (a) Z. Hao, S. Hong, X. Chen and P. R. Chen, Acc. Chem.
Res., 2011, 44, 742–751; (b) Z. Zhang, B. A. C. Smith,
L. Wang, A. Brock, C. Cho and P. G. Schultz, Biochemistry,
2003, 42, 6735–6746; (c) Y. Wang and X. S. Ye, Acta Chim.
Sin., 2012, 70, 2208–2212.
Acknowledgements
We thank the financial support from the National Science and
Technology Pillar Program of China (2011BAE06B02), the
National Natural Science Foundation of China (21236002), the
National Basic Research Program of China (973 program,
2013CB733700, 2010CB126100), the National High Technology
Research and Development Program of China (863 program,
2011AA10A207), the Shanghai Pujiang Program and the Funda-
mental Research Funds for the Central Universities. We also
thank Dr Charles Yang for the improvement of this article.
9 A. Sagi, R. Weinstain, N. Karton and D. Shabat, J. Am.
Chem. Soc., 2008, 130, 5434–5435.
Notes and references
1 (a) J. Koukol and E. E. Conn, J. Biol. Chem., 1961, 236, 10 (a) B. Lercari, F. Sodi and M. Biagioni, Environ. Exp. Bot.,
2692–2698; (b) M. J. MacDonald and G. B. D’Cunha,
Biochem. Cell. Biol., 2007, 85, 273–282.
2 (a) C. N. Sarkissian, Z. Shao, et al., Proc. Natl. Acad.
Sci. U. S. A., 1999, 96, 2339–2344; (b) W. Kim, H. Erlandsen,
1986, 26, 153–157; (b) J. Guo and M. H. Wang, Plant Growth
Regul., 2010, 62, 1–8; (c) D. N. Kuhn, J. Chappell, A. Boudet
and K. Hahlbrock, Proc. Natl. Acad. Sci. U. S. A., 1984, 81,
1102–1106.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 5818–5821 | 5821