7
112
Y.-M. Ren, C. Cai / Tetrahedron Letters 49 (2008) 7110–7112
Venanzi, L. M.; Wang, G.; Ward, T. R. Tetrahedron Lett. 1989, 30, 6151; (g) Wang,
B.; Gu, Y.; Song, G.; Yang, T.; Yang, L.; Suo, J. J. Mol. Catal. A: Chem. 2005, 233,
21; (h) Clerici, A.; Pastori, N.; Porta, O. Tetrahedron Lett. 2001, 57, 217.
(a) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2002,
3, 9703; (b) Bandgar, B. P.; Shaikh, K. A. Tetrahedron Lett. 2003, 44, 1959; (c)
Phukan, P. J. Org. Chem. 2004, 69, 4005; (d) Phukan, P. Tetrahedron Lett. 2004, 45,
reduced pressure gave the desired pure product IL 400 in 86% yield. 1H NMR
(500 MHz, CDCl ): 2.85 (s, 6H, 2OSO CH ), 3.75 (t, 36H, J = 4.3 Hz
(OCH CH ), 3.88 (s, 6H, 2NCH ), 7.48 (s, 2H, 2CH), 7.60 (s, 2H, 2CH), 8.92 (s,
2H, 2CH); C NMR (500 MHz, CDCl ): d 37.1, 39.5, 49.5, 69.1, 70.3, 70.4, 122.8,
3
d
2
3
1
2
2
)
n
3
1
3
3
.
3
2
+
2+
2+
4
123.6, 137.1; ESI-MS: 294.12, M /2, n = 9, 316.42, M /2, n = 10, 338.13, M /2,
+ 2+
n = 11, 360.33, M2 /2, n = 12, 382.13, M /2, n = 13, 108.9 (95); IR (KBr, cm ):
À1
4
2
785; (e) Banik, B. K.; Fernandez, M.; Alvarez, C. Tetrahedron Lett. 2005, 46,
479; (f) Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243; (g) Ishihara, M.; Togo,
3445, 3182, 2985, 1456, 1321, 1194, 1101, 1059, 895, 594.
The spectra data for IL 200: 1H NMR (500 MHz, CDCl
3
) d 2.84 (s, 6H, 2OSO
2 3
CH ),
H. Tetrahedron 2007, 643, 1474; (h) Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M.
L.; Ke, J. K.; Chan, P. W. H. Tetrahedron Lett. 2008, 49, 122; (i) Ren, Y. M.; Cai, C.
Catal. Lett. 2007, 118, 134; (j) Ren, Y. M.; Cai, C. Catal. Commun. 2008, 9, 1017.
(a) Iranpoor, N.; Tamami, B.; Niknam, K. Can. J. Chem. 1997, 75, 1913; (b)
Tamami, B.; Iranpoor, N.; Mahdavi, H. Synth. Commun. 2002, 32, 1251; (c) Deka,
N.; Sarma, J. C. Chem. Lett. 2001, 794; (d) Saxena, I.; Borah, D. C.; Sarma, J. C.
Tetrahedron Lett. 2005, 46, 1159; (e) Zahouily, M. Z.; Mezdar, A.; Rakik, J.;
Elmakssoudi, A.; Rayadh, A.; Sebti, S. J. Mol. Catal. A: Chem. 2005, 233, 43.
(a) Welton, T. Chem. Rev. 1999, 99, 2071; (b) Wasserscheid, P.; Keim, W. Angew.
Chem., Int. Ed. 2000, 39, 3772.
3.70 (t, 17H, J = 8.0 Hz (OCH
2
CH
2
)
n
), 3.94 (s, 6H, 2NCH ), 7.52 (s, 2H, 2CH), 7.58
3
2
+
2+
(s, 2H, 2CH), 8.78 (s, 2H, 2CH); ESI-MS: 184.22, M /2, n = 4, 206.12, M /2,
n = 5, 228.31, M2 /2, n = 6, 250.11, M /2, n = 7, 272.23, M /2, n = 8, 83.14
+
2+
2+
À1
4
.
(100); IR (KBr, cm ): 3454, 3153, 2985, 1435, 1350, 1207, 1051, 858, 623.
The spectra data for IL 1000: 1
H
NMR (500 MHz, CDCl
), 3.70–3.76 (m, 97H, J = 15.0 Hz (OCH CH ), 3.82 (s, 6H, 2NCH
7.52 (s, 2H, 2CH), 7.59 (s, 2H, 2CH), 8.81 (s, 2H, 2CH); ESI-MS: 448.17, M /2,
d
2.85 (s, 6H,
3
)
2OSO
2
CH
3
2
)
2 n
3
),
2+
2+
2+
2+
n = 16), 470.20, M /2, n = 17, 492.20, M /2, n = 18, 514.27, M /2, n = 19,
+
2+
2+
2+
5
6
7
.
.
.
558.27, M2 /2, n = 21, 580.30, M /2, n = 22, 602.33, M /2, n = 23, 624.36, M
/
2+ 2+ 2+
2, n = 24, 646.36, M /2, n = 25, 668.37, M /2, n = 26, 690.43, M /2, n = 27,
712.43, M2 /2, n = 28, 153.07 (100); IR (KBr, cm ): 3447, 3153, 2985, 1447,
+
À1
Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. J.
Chem. Soc., Chem. Commun. 1998, 1765.
(a) Sheldon, R. J. Chem. Soc., Chem. Commun. 2001, 2399; (b) Gordon, C. M. Appl.
Catal., A 2001, 222, 101; (c) Zimmermann, H. E.; Wang, P. A. J. Am. Chem. Soc.
1352, 1205, 1117, 1060, 858, 587.
11. Typical procedure for the protection of carbonyl groups catalyzed by iodine
immobilized in the IL 400: To a solution of carbonyl compounds (1 mmol) and
1
993, 115, 2205.
2
ethylene glycol (1 mL) in IL 400 (1 mL) was added I (0.05 mmol). The mixture
8
9
.
.
Zhi, H. Z.; Luo, J.; Ma, W.; Lü, C. X. Chem. J. Chin. Univ. 2008, 29, 772.
Banik, B. K.; Chapa, M.; Marquez, J.; Cardona, M. Tetrahedron Lett. 2005, 46,
was stirred at room temperature. After the reaction, toluene (2 Â 1 mL) was
added to the mixture. The mixture was stirred at 80 °C for several minutes.
After the mixture was cooled to room temperature, the upper toluene
containing the expected product was separated by decantation. The toluene
was evaporated, and the pure products were obtained by purification through
basic alumina using ethyl acetate–hexane (10:90) as the eluent. The bottom
phase was the ionic liquid containing the iodine and the produced water. The
2
341.
1
0. Typical procedure for the synthesis of IL 400: To a solution of PEG 400 (60 mmol)
and triethylamine (120 mmol) in toluene (200 mL) was added methylsulfonyl
chloride (10 mL) within 30 min under nitrogen atmosphere. The mixture was
stirred at room temperature. After 3 h, the mixture was filtrated. The filtrate
was added to 1-methylimidazol (120 mmol), and the mixture was stirred at
system of I
pressure.
2
/IL 400 was reused after removal of the water under reduced
8
6 °C for 17 h. After the reaction, the ionic liquid layer was separated and
washed with petroleum ether (3 Â 10 mL). Evaporation of solvent under